WEIGHTED COMPOSITION OPERATORS BETWEEN BERGMAN-TYPE SPACES

DOI QR코드

DOI QR Code

Sharma, Ajay K.;Sharma, Som Datt

  • 발행 : 2006.07.01

초록

In this paper, we characterize the boundedness and compactness of weighted composition operators ${\psi}C_{\varphi}f={\psi}fo{\psi}$ acting between Bergman-type spaces.

키워드

weighted Bergman spaces;growth spaces;weighted composition operator;composition operator;multiplication operator

참고문헌

  1. K. R. M. Attele, Multipliers of composition operators, Tokyo J. Math. 15 (1992), 185-198 https://doi.org/10.3836/tjm/1270130260
  2. M. D. Contreras and A. G. Hernandcz-Diaz, Weighted composition operators on Hardy spaces, J. Math. Anal. Appl. 263 (2001), 224-233 https://doi.org/10.1006/jmaa.2001.7610
  3. M. D. Contreras and A. G. Hernandcz-Diaz, Weighted composition operators on spaces of functions with derivatiae in a Hardy space, J. Operator Theory 52 (2004), 173-184
  4. C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, CRC Press Boca Raton, New York, 1995
  5. Z. Cuckovic and R. Zhao, Weighted composition operators on the Bergman space, J. London Math. Soc. 70 (2004), 499-51l https://doi.org/10.1112/S0024610704005605
  6. H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman spaces, Springer, New York, Berlin, etc. 2000
  7. H. Kamowitz, Compact operators of the form $uC_{\varphi}$, Pacific J. Math. 80 (1979), 205-211 https://doi.org/10.2140/pjm.1979.80.205
  8. J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. 23 (1925)
  9. B. D. MacCluer and J. H. Shapiro, Angular derivatives and compact composition operators on Hardy and Bergman spaces, Can. J. Math. 38 (1986), 878-906 https://doi.org/10.4153/CJM-1986-043-4
  10. V. Matache, Compact composition operators on Hardy spaces of a half-plane, Proc. Amer. Math. Soc. 127 (1999), 1483-1491
  11. G. Mirzakarimi and K. Seddighi, Weighted composition operators on Bergman and Dirichlet spaces, Georgian. Math. J. 4 (1997), 373-383 https://doi.org/10.1023/A:1022946629849
  12. H. J. Schwartz, Composition operators on $H^p$, Thesis, University of Toledo, 1969
  13. J. H. Shapiro and P. D. Taylor, Compact, nuclear and Hilbert-Schmidt composition operators on $H^2$, Indiana Univ. Math J. 23 (1973), 471-496 https://doi.org/10.1512/iumj.1973.23.23041
  14. J. H. Shapiro, The essential norm of a composition operator, Ann. Math. 125 (1987), 375-404 https://doi.org/10.2307/1971314
  15. J. H. Shapiro, Composition operators and classical function theory, Springer-Verlag, New York. 1993
  16. J. H. Shapiro and W. Smith, Hardy spaces that support no compact composition operators, J. Funct. Anal. (to appear)
  17. S. Ohno, K. Stroethoff, and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (2003), 191-215 https://doi.org/10.1216/rmjm/1181069993
  18. S. Ohno and H. Takagi, Some properties of weighted composition operators on algebras of analytic functions, J. Nonlinear Convex Anal. 2 (2001), 369-380
  19. S. Ohno and R. Zhao, Weighted composition operators on the Bloch spaces, Bull. Austral. Math. Soc. 63 (2001), 177-185 https://doi.org/10.1017/S0004972700019250
  20. K. Zhu, Operator theory in function spaces, Marcel Dekker, New York, 1990
  21. R. K. Singh and S. D. Sharma, Composition operators on a functional Hilbert space, Bull. Austral. Math. Soc. 20 (1979), 277-284
  22. W. Smith, Composition operators between Bergman and Hardy spaces, Trans. Amer. Math. Soc. 348 (1996), 2331-2348 https://doi.org/10.1090/S0002-9947-96-01647-9
  23. F. Forelli, The isometries of $H^P$ spaces, Canad. J Math. 16 (1964), 721-728 https://doi.org/10.4153/CJM-1964-068-3
  24. K. Hoffman, Banach spaces of analytic functions, Dover Publications, Inc., 1988

피인용 문헌

  1. 1. Weighted Iterated Radial Composition Operators between Some Spaces of Holomorphic Functions on the Unit Ball vol.2010, 2010, doi:10.4134/CKMS.2006.21.3.465
  2. 2. On a product-type operator from Bloch spaces to weighted-type spaces on the unit ball vol.217, pp.12, 2011, doi:10.4134/CKMS.2006.21.3.465
  3. 3. Composition operators from the space of Cauchy transforms to Bloch and the little Bloch-type spaces on the unit disk vol.217, pp.24, 2011, doi:10.4134/CKMS.2006.21.3.465
  4. 4. Weighted Composition Operators from Weighted Bergman Spaces to Weighted-Type Spaces on the Upper Half-Plane vol.2011, 2011, doi:10.4134/CKMS.2006.21.3.465
  5. 5. Weighted composition operators between weighted Bergman spaces vol.103, pp.1, 2009, doi:10.4134/CKMS.2006.21.3.465