DOI QR코드

DOI QR Code

Effects of Arsenic (AsIII) on Lipid Peroxidation, Glutathione Content and Antioxidant Enzymes in Growing Pigs

  • Wang, L. ;
  • Xu, Z.R. ;
  • Jia, X.Y. ;
  • Jiang, J.F. ;
  • Han, X.Y.
  • Received : 2005.07.05
  • Accepted : 2005.12.23
  • Published : 2006.05.01

Abstract

This experiment was conducted to investigate the effect of arsenic ($As^{III}$) on lipid peroxidation, glutathione content and antioxidant enzymes in growing pigs. Ninety-six Duroc-Landrace-Yorkshire crossbred growing pigs (48 barrows and 48 gilts, respectively) were randomly assigned to four groups and each group was randomly assigned to three pens (four barrows and four gilts). The four groups received the same corn-soybean basal diet which was supplemented with 0, 10, 20, 30 mg/kg As respectively. Arsenic was added to the diet in the form of $As_2O_3$. The experiment lasted for seventy-eight days after a seven-day adaptation period. Malondialdehyde (MDA) levels, glutathione (GSH) contents and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) activities were analyzed in serum, livers and kidneys of pigs. The results showed that pigs treated with 30 mg As/kg diet had a decreased average daily gain (ADG) (p<0.05) and an increased feed/gain ratio (F/G) (p<0.05) compared to the controls. The levels of MDA significantly increased (p<0.05), and the contents of GSH and the activities of SOD, CAT, GPx, GR and GST significantly decreased (p<0.05) in the pigs fed 30 mg As/kg diet. The results indicated that the mechanism of arsenic-induced oxidative stress in growing pigs involved lipid peroxidation, depletion of glutathione and decreased activities of some enzymes, such as SOD, CAT, GPx, GR and GST, which are associated with free radical metabolism.

Keywords

Growing Pigs;Arsenic;Growth Performance;Lipid Peroxidation;Glutathione;Antioxidant Enzymes

References

  1. Carlberg, I. and B. Mannervik. 1985. Glutathione reductase. Methods Enzymol. 113:484-485 https://doi.org/10.1016/S0076-6879(85)13062-4
  2. Falkner, K. C., G. P. McCallum, M. G. Cherian and J. R. Bend. 1993. Effects of acute sodium arsenite administration on the pulmonary chemical metabolizing enzymes, cytochrome P-450 monooxygenase, NAD(P)H: quinone acceptor oxidoreductase and glutathione-S-transferase in guinea pig: comparison with effects in liver and kidney. Chem. Biol. Interact. 86:51-68 https://doi.org/10.1016/0009-2797(93)90111-B
  3. IARC, 1987. Arsenic and arsenic compounds (Group 1). In: IARC monographs on the evaluation of the carcinogenic risks to humans. Supplement 7, date accessed: 6 February 2003
  4. Keyse, S. M. and R. M. Tyrell. 1989. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide and sodium arsenite. Proc. Natl. Acad. Sci. USA 86:99-103
  5. Liu, S. X., M. Athar, I. Lippai, C. Waldren and T. K. Hei. 2001. Induction of oxygen radicals by arsenic: implications for mechanism of genotoxicity. Proc. Natl. Acad. Sci. USA. 98:1643-1648
  6. Ng, J. C., L. Qi, J. Wang, X. Xiao, M. Shahin, M. R. Moore and A. S. Prakash. 2001. Mutations in C57BI/6J and metallothionein knock-out mice induced by chronic exposure to sodium arsenate in drinking water. In: (W. R. Chappell, C. O. Abernathy and R. L. Calderon). Arsenic Exposure and Health Effects. Elsevier, pp. 231-242
  7. Ng, J. C., A. A. Seawright, L. Qi, C. M. Garnett, B. Chiswell and M. R. Moore. 1999. Tumors in mice induced by exposure to sodium arsenate in drinking water. In: (Ed. W. R. Chappell, C. O. Abernathy and R. L. Calderon), Arsenic Exposure and Health Effects. Elsevier, pp. 217-223
  8. Searle, A. J. and R. Wilson. 1980. Glutathione peroxide effect of hydroxyl and bromine free radicals on enzyme activity. Int. J. Radiat. Biol. 37:213-217 https://doi.org/10.1080/09553008014550261
  9. Vreman, K., N. G. van der Veen, E. J. van der Mollen and W.G. de Ruig. 1986. Transfer of cadmium, lead, mercury and arsenic from feed into milk and various tissues of dairy cows: chemical and pathological data. Netherlands Journal of Agric. Sci. 34(2):129-144
  10. Xu, A., L. J. Wu, R. Santella and T. K. Hei. 1999. Role of reactive oxygen species in the mutagenicity and DNA damage induced by crocidolite fibers in mammalian cells. Cancer Res. 59:5615- 5624
  11. Zaman, K., R. S. MacGill, J. E. Johnson, S. Ahmad and R. S. Pardini. 1995. An insect model for assessing oxidative stress related to arsenic toxicity. Arch. Insect Biochem. Physiol. 29:199-210 https://doi.org/10.1002/arch.940290209
  12. Maiti, S. and A. K. Chatterjee. 2000. Differential response of cellular antioxidant mechanism of liver and kidney to arsenic exposure and its relation to dietary protein deficiency. Environ. Toxicol. Pharm. 8:227-235 https://doi.org/10.1016/S1382-6689(00)00046-6
  13. Lee, T. C. and I. C. Ho. 1995. Modulation of cellular antioxidant defense activities by sodium arsenite in human fibroblasts. Arch. Toxicol. 69:498-508 https://doi.org/10.1007/s002040050204
  14. Wang, T. S., Y. F. Shu, Y. C. Liu, K. Y. Jan and H. Huang. 1997. Glutathione peroxidase and catalase modulate the genotoxicity of arsenite. Toxicol. 121:229-37 https://doi.org/10.1016/S0300-483X(97)00071-1
  15. Czarnecki, G. L. and D. H. Baker. 1985. J. Anim. Sci. 60(2):440- 450 https://doi.org/10.2527/jas1985.602440x
  16. Cunningham, M. L., M. J. Zvelebi and A. H. Fairlamb. 1994. Mechanism of inhibition of trypnothione reductase and glutathione reductase by trivalent arsenicals. Eur. J. Biochem. 221:285-295 https://doi.org/10.1111/j.1432-1033.1994.tb18740.x
  17. Holcman, A. and V. Stibilj. 1997.Asenic residuls in eggs from laying hens fed with a diet containing arsenic (III) oxide. Arch. Environ. Contam. Toxicol. 32(4):407-410 https://doi.org/10.1007/s002449900204
  18. Habig, W. H., M. J. Pabst and W. B. Jakoby. 1974. Glutathione Stransferases: the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249:7130-7139
  19. Wills, E. D. 1966. Mechanisms of lipid peroxide formation in animal tissues. Biochem. J. 99:667-676 https://doi.org/10.1042/bj0990667
  20. Styblo, M., S. V. Serves, W. R. Cullen and D. J. Thomas. 1997. Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem. Res. Toxicol. 10:27-33 https://doi.org/10.1021/tx960139g
  21. Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105:121-126 https://doi.org/10.1016/S0076-6879(84)05016-3
  22. Flora, S. J. S., Dubey Rupa, G. M. Kannan, R. S. Chauhan, B. P. Pant and D. K. Jaiswal. 2002. Meso 2,3-dimercaptosuccinic acid (DMSA) and monoisoamyl DMSA effect on gallium arsenide induced pathological liver injury in rats. Toxicol. Letters 132:9-17 https://doi.org/10.1016/S0378-4274(02)00034-6
  23. Flohe, L. and W. A. Gunzler. 1984. Assays of glutathione peroxidase. Methods Enzymol. 105:114-121 https://doi.org/10.1016/S0076-6879(84)05015-1
  24. Maiti, S. and A. K. Chatterjee. 2001. Effects on levels of glutathione and some related enzymes in tissues after an acute arsenic exposure in rats and their relationship to dietary protein deficiency. Arch. Toxicol. 75(9):531-537 https://doi.org/10.1007/s002040100240
  25. Ellman, G. L., 1959. Tissue sulfhydryl groups. Arch. Biochem. 82:70-77 https://doi.org/10.1016/0003-9861(59)90090-6
  26. Hughes, M. F. 2002. Arsenic toxicity and potential mechanisms of action. Toxicol. Letters 33:1-16 https://doi.org/10.1016/0378-4274(86)90066-4
  27. Imlay, J. A. and S. Linn. 1988. DNA damage and oxygen radical toxicity. Sci. 240:1302-1309 https://doi.org/10.1126/science.3287616
  28. Ramos, O., L. Carrizales, L. Yanez, L. Mejia, L. Batres, D. Ortiz and F. Diaz-Barriga. 1995. Arsenic increased lipid peroxidation in rat tissues by a mechanism independent of glutathione levels. Environ. Health Perspect. 103(Suppl 1):85- 98 https://doi.org/10.1289/ehp.95103s485
  29. Wang, T. S. and H. Huang. 1994. Active oxygen species are involved in the induction of micronuclei in XRS-5 cells. Mutagenesis 9:253-257 https://doi.org/10.1093/mutage/9.3.253
  30. Mandal, B. K. and K. T. Suzuki. 2002. Arsenic round the world: a review. Talanta 58:201-235 https://doi.org/10.1016/S0039-9140(02)00268-0
  31. Hei, T. K., C. R. Geard and E. J. Hall. 1984. Effects of cellular non-protein sulfhydryl depletion in radiation induced oncogenic transformation and genotoxicity in mouse 10T1/2 cells. Int. J. Radiat. Oncol. Biol. Phys. 10:1255-1259 https://doi.org/10.1016/0360-3016(84)90328-6
  32. Liu, L., J. R. Trimarchi, P. Navarro, M. A. Blasco and D. L. Keefe. 2003. Oxidative stress contributes to arsenic induced telomere attrition, chromosomal instability and apoptosis. J. Biol. Chem. 278:31998-32004 https://doi.org/10.1074/jbc.M303553200
  33. Yu, Shiguang and A. C. Beynen. 2000. High arsenic raises kidnek copper and lows plasma copper concentrstions in rats. Biol. Trace Element Res. 81:63-70 https://doi.org/10.1385/BTER:81:1:63
  34. Holcman, A., S. Malovrh and V. Knex. 2001.The effect of diet containing arsenic(III) oxide on the traits of eggs. Zbornik Biotechniske Fakalter Univerze Ljubljani. Kmetijstvo, Zootehnika 78(2):211-218
  35. Kono, Y. and I. Fridovich. 1982. Superoxide radicals inhibit catalase. J. Biol. Chem. 257:5751-5754
  36. Kirkman, M. N. and G. F. Gaetani. 1984. Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc. Natl. Acad. Sci. USA. 81:4343-4347
  37. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  38. Donoghue, D. J., H. Hairstone, C. V. Cope, M. J. Barthlomew, and D. D. Wagner. 1994. Incurred arsenc residules in chicken eggs. J. Food Prot. 57(3):218-223 https://doi.org/10.4315/0362-028X-57.3.218
  39. Asada, K., M. Takahashi and M. Nagate. 1974. Assay and inhibitors of spinach suoeroxide dismutase. Agric. Biol. Chem. 38:471-473 https://doi.org/10.1271/bbb1961.38.471
  40. Morrison, L. L. and E. R. Chaves. 1983. Selenlum-arsenic interaction in the weanling pigs. Can. J. Anim. Sci. 63(1):239- 246 https://doi.org/10.4141/cjas83-028
  41. Singh, T. S. and K. K. Pant. 2004. Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Separation and Purification Technol. 36:139-147 https://doi.org/10.1016/S1383-5866(03)00209-0

Cited by

  1. Effects of different selenium sources and levels on serum biochemical parameters and tissue selenium retention in rats vol.3, pp.2, 2009, https://doi.org/10.1007/s11703-009-0030-1
  2. Arsenic interactions with lipid particles containing iron vol.31, pp.S1, 2009, https://doi.org/10.1007/s10653-008-9236-z
  3. Oxidative stress induced by the chemotherapeutic agent arsenic trioxide vol.4, pp.4, 2014, https://doi.org/10.1007/s13205-013-0170-0
  4. The effect of arsenic on some antioxidant enzyme activities and lipid peroxidation in various tissues of mirror carp (Cyprinus carpio carpio) vol.22, pp.5, 2015, https://doi.org/10.1007/s11356-014-2896-6
  5. Histopathological and biochemical effects of cyanobacterial cells containing microcystin-LR on Tilapia fish vol.30, pp.1-2, 2016, https://doi.org/10.1111/wej.12169
  6. Arjunolic Acid Improves the Serum Level of Vitamin B12 and Folate in the Process of the Attenuation of Arsenic Induced Uterine Oxidative Stress pp.1559-0720, 2017, https://doi.org/10.1007/s12011-017-1077-0
  7. Betulinic acid, natural pentacyclic triterpenoid prevents arsenic-induced nephrotoxicity in male Wistar rats pp.1618-565X, 2017, https://doi.org/10.1007/s00580-017-2548-6