Growth, Feed Utilization and Nutrient Retention of Juvenile Olive Flounder (Paralichthys olivaceus) Fed Moist, Semi-moist and Extruded Diets

  • Kim, J.-D. (Department of Feed Science & Technology, Kangwon National University) ;
  • Shin, S.-H. (Department of Feed Science & Technology, Kangwon National University)
  • Received : 2005.08.12
  • Accepted : 2005.12.21
  • Published : 2006.05.01


In an attempt to develop an artificial diet for growing olive flounder (Paralichthys olivaceus), weight gain, feed utilization and nutrient retention were investigated in fish fed moist (MP), semi-moist (SMP) and extruded pellets (EP). Excretion of nitrogen and phosphorus was also estimated based on their whole body gain and intake. EP and MP composed of raw fish and SMP made of formulated powder feed with water were prepared to have the same energy contents on a dry matter basis. A total of 240 fish with an average initial weight of 120 g were randomly distributed to each (20 fish/tank) of 12 circular plastic tanks (4 tanks/treatment) and fed experimental diets for 8 weeks. Fish groups fed EP (209 g) or SMP (209 g) recorded higher final weight than those fed MP (176 g), while dry feed consumption was highest in SMP groups (106 g), followed by MP (71 g) and EP groups (62 g). As a consequence, fish groups fed EP showed much lower feed conversion ratio than the other two groups. Protein efficiency ratio was also significantly higher in fish groups fed EP (2.55) than in those fed MP (1.44) and SMP (1.31). Fish groups fed EP, which showed the highest nitrogen retention of 43.9%, resulted in the lowest excretion of nitrogen of 35.5 g per kg gain. Also, the lowest phosphorus excretion of 6.0 g per kg gain was found in the EP groups with the highest P retention (37.0%) among treatments. Although the EP groups had the lowest dietary energy intake, they retained the highest energy in the whole body among treatments. The present results showed that EP could be more advantageous than MP or SMP in terms of growth, feed utilization and excretion of nitrogen and phosphorus for olive flounder.


  1. Alam, M. S., S. Teshima, S. Koshio and M. Ishikawa. 2002. Arginine requirement of juvenile Japanese flounder Paralichthys olivaceus estimated by growth and biochemical parameters. Aquaculture 205:127-140
  2. Bowen, S. H. 1987. Dietary protein requirements of fishes a reassessment. Can. J. Fish. Aquat. Sci. 44:1995-2001
  3. Bromly, P. J. 1980b. The effect of dietary water content and feeding rate on the growth and food conversion efficiency of turbot (Scopthalmus maximus). Aquaculture 20:91-99
  4. Choi, S. M., X. J. Wang, G. J. Park, S. R. Lim, K. W. Kim, S. C. Bae and I. S. Shin. 2004. Dietary dehulled soybean meal as a replacement for fish meal in fingerling and growing olive flounder Paralichtys olivaceus. Aquacult. Res. 35:410-418
  5. Falke, C. and N. Kautsky. 1989. The role of ecosystems for a sustainable development of aquaculture. AMBIO 18:234-243
  6. Forster, I. and Y. H. Ogata. 1998. Lysine requirement of juvenile Japanese flounder Paralichthys olivaceus and juvenile red sea bream Pagrus major. Aquaculture 161:131-142
  7. Garling, D. L. and R. P. Wilson. 1976. Optimum dietary protein to energy ratios for channel catfish fingerlings, Ictalurus punctatus. J. Nut. 106:1368-1375
  8. Kikuchi, K. 1999. Use of defatted soybean meal as a substitute for fish meal in diets of Japanese flounder (Paralichtys olivaceus). Aquaculture 179:3-11
  9. Kikuchi, K. and I. Sakaguchi. 1997. Blue mussel as an ingredient in the diet of juvenile Japanese flounder. Fisheries Science 63:837-838
  10. Lee, S. M., C. S. Park and I. C. Bang. 2002. Dietary protein requirement of young Japanese flounder Paralichtys olivaceus fed isocaloric diets. Fisheries Sci. 68:158-164
  11. Masumoto, T., B. Tamura and S. Shimeno. 2001. Effects of phytase on bioavailability of phosphorus in soybean mealbased diets for Japanese flounder Paralichthys olivaceus. Fisheries Sci. 67:1075-1080
  12. Person-Le Ruyet, J. and T. Noel. 1982. Effects of moist pelleted foods on the growth of hatchery turbot (Scopthalmus maximus) juvenile. J. World Maricult. Soc. 13:237-245
  13. Sato, T. 1999. Development of formulated feeds for juvenile Japanese flounder. Ph.D. thesis, Tokyo University of Fisheries, Tokyo, pp. 134. (in Japanese)
  14. Steel, R. G. D. and J. H. Torrie. 1960. Principles and Procedures of Statistics. McGraw-Hill Co., New York, NY, pp. 481
  15. Furuita, H., T. Takeuchi and K. Uematsu. 1998. Effects of eicosapentaenoic and docosahexaenoic acids on growth, survival and brain development of larval Japanese flounder (Paralichtys olivaceus). Aquaculture 161:269-279
  16. Sato, M., R. Yoshinaka, Y. Nishinaka, H. Morimoto, T. Kojima and Y. Yamamoto. 1986. Comparison of nutritive components in meat of wild and cultured bastard halibut Paralichthys olivaceus. Nippon Suisan Gakkaishi 52:1043-1047
  17. Kim, J. D. 2000. Effects of dietary microbial phytase supplementation on growth and feed utilization of Japanese flounder (Paralichthys olivaceus). Annals Anim. Res. Sci. 11:46-59
  18. Hara, T. 1994. The diversity of chemical stimulation in fish olfaction and gestation. Reviews in Fish Biology and Fisheries 4:1-35
  19. Saitoh, S., S. Koshio, H. Harada, K. Watanabe, T. Yoshida, S. Teshima and M. Ihikawa. 2003. Utilization of extruded soybean meal for Japanese flounder Paralichthys olivaceus juveniles. Fisheries Sci. 69:1075-1077
  20. Kim, K. W., X. J. Wang and S. C. Bai. 2002. Optimum dietary protein level for maximum growth of juvenile olive flounder Paralichthys olivaceus. Aquacult. Res. 33:673-679
  21. Lee, S. M., S. H. Cho and K. D. Kim. 2000. Effects of dietary protein and energy levels on growth and body composition of juvenile flounder Paralichthys olivaceus. J. World Aquacult. Soc. 31:306-315
  22. Kikuchi, K., H. Sugita and T. Watanabe. 2000. Effect of dietary protein and lipid level on growth and body composition of Japanese flounder, Paralichtys olivaceus. Suisanzoshoku 48:537-543
  23. Sato, T. and K. Kikuchi. 1997. Meat meal as a protein source in the diet of juvenile Japanese flounder. Fisheries Sci. 63:877- 880
  24. Oku, H. and H. Y. Ogata. 2000. Body lipid deposition in juveniles of red sea bream Pagrus major, yellowtail Seriola quinqueradiata and Japanese flounder Paralichthys olivaceus. Fisheries Sci. 66:25-31
  25. Bjornsson, B., G. Sigurthorsson, G.-I. Hemre and O. Lie. 1992. Growth rate and feed conversion factors of young halibut (Hippoglossus hippoglossus) fed six different diets. Fisk. Dir. Skr., Ser. Ernaering. 5:25-35
  26. Ghittino, P. 1979. Formulation and technology of moist feed. Proc. World. Symp. on Finfish Nutrition and Fishfeed Technology, Hamburg, Germany, Vol. II, pp. 37-40
  27. Kim, J. D., S. H. Shin, K. J. Cho and S. M. Lee. 2002. Effect of daily and alternate day feeding regimes on growth and food utilization by juvenile flounder Paralichthys olivaceus. J. Aquaculture 15:15-21
  28. Regost, C., J. Arzel and S. J. Kaushik. 1999. Partial or total replacement of fish meal by corn gluten meal in diet for turbot Psetta maxima. Aquaculture 180:99-117
  29. Bromly, P. J. 1980a. Effect of dietary protein, lipid and energy content on the growth of turbot Scopthalmus maximus. Aquaculture 19:359-369
  30. Kim, J. D. and S. P. Lall. 2001. Effects of dietary protein level on growth and utilization of protein and energy by juvenile haddock Melanogrammus aeglefinus. Aquaculture 195:311- 319
  31. Kim, J. D. and S. P. Lall. 2003. Dietary lysine requirement of juvenile yellowtail flounder Pleuronectes ferrugineus. Asian-Aust. J. Anim. Sci. 16:1777-1781
  32. Takeuchi, M. 1978. Effect of dietary lipid on lipid accumulation in ayu, Plecoglossus altivelis. Bull. Takai Reg. Fish. Res. Lab. 93:103-109
  33. Alam, M. S., S. Teshima, M. Ishikawa and S. Koshio. 2000. Methionine requirement of juvenile Japanese flounder Paralichthys olivaceus. J. World Aquacult. Soc. 31:618-626
  34. Lee, D. J. and G. B. Putnam. 1973. The response of rainbow trout to varying protein/energy ratios in a test diet. J. Nut. 103:916- 922
  35. Kaushik, S. J. 1998. Whole body amino acid composition of European sea bass (Dicentrarchus labrax), gilthead sea bream (Sparus aurata) and turbot (Psetta maxima) with an estimation of their IAA requirement profiles. Aquat. Living Resour. 11:355-358
  36. Kim, J. D. and S. B. Lee. 2000. Effects of dietary prowth, feed utilization and pollution load of Japanese flounder (Paralichthys olivaceus). Annals Anim. Res. Sci. 11:75-84
  37. Tacon, A. G. J. 1995. Application of nutrient requirement data under practical condition: special problems of intensive and semi-intensive fish farming systems. J. Appl. Ichthyol. 11:205- 214
  38. Kikuchi, K., H. Honda and M. Kiyono. 1992. Effect of dietary protein level on growth and body composition of Japanese flounder, Paralichtys olivaceus. Suisanzoshoku 40:335-340
  39. Basha, S. M. M. and R. M. Robert. 1977. A simple colorimetric method for determination of tryptophan. Anal. Biochem. 77:378-386
  40. Kim, J. D. 2002. Direction of less pollution diet development for sustainable marine fish farming. MOMAF, pp. 248. Korea
  41. Kim, J. D., J. Y. Lee, K. S. Kim, S. B. Lee, N. J. Choi and E. O. Kim. 1998. Growth and excretion of nitrogen and phosphorus of Israeli strain of carp (Cyprinus carpio) fed a low pollution diets. J. Aquaculture 11:39-48
  42. AOAC. 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, p. 1904
  43. Fredette, M., J. Batt and J. Castell. 2000. Feeding stimulant for juvenile winter flounders. North Am. J. Aquacult. 62:157-160<0157:FSFJWF>2.0.CO;2
  44. Kim, J. D. and S. J. Kaushik. 1992. Contribution of digestible energy from carbohydrates and estimation of protein/energy requirements for growth of rainbow trout oncorhynchus mykiss. Aquaculture 106:161-169
  45. Lee, S. M., K. D. Kim and S. P. Lall. 2003. Utilization of glucose, maltose, dextrin and cellulose by juvenile flounder (Paralichthys olivaceus). Aquacult. 221:427-438
  46. Regost, C., J. Arzel, M. Cardinal, J. Robin, M. Laroche and S. J. Kaushik. 1999. Dietary lipid level, hepatic lipogenesis and flesh quality in turbot (Psetta maxima). Aquacult. 193:291-309

Cited by

  1. Rearing diet may determine fish restocking success: a case study of hatchery-reared juvenile meagre, Argyrosomus regius vol.79, pp.4, 2015,