Estimation of Genetic Variation in Holstein Young Bulls of Iran AI Station Using Molecular Markers

  • Rahimi, G. (Deptartment of Animal Science, Faculty of Agriculture, Mazandaran University) ;
  • Nejati-Javaremi, A. (Department of Animal Science, Faculty of Agriculture, Tehran University) ;
  • Saneei, D. (MobarakAndish Institute) ;
  • Olek, K. (Biopsytec GmbH)
  • Received : 2005.07.05
  • Accepted : 2005.11.18
  • Published : 2006.04.01


Genetic profiles of Iranian Holstein young bulls at the national artificial insemination station were determined on the basis of individual genotypes at 13 ISAG's recommended microsatellites, the most useful markers of choice for parentage identification. In the present study a total of 119 individuals were genotyped at 13 microsatellite loci and for possible parent-offspring combinations. A high level of genetic variation was evident within the investigated individuals as assessed from various genetic diversity measures. The mean number of observed alleles per microsatellite marker was 9.15 and the number of effective alleles as usual was less than the observed values (4.03). The average observed and expected heterozygosity values were 0.612 and 0.898, respectively. The mean polymorphic information content (PIC) value (0.694) further reflected a high level of genetic variability. The average exclusion of probability (PE) of the 13 markers was 0.520, ranging from 0.389 to 0.788. The combined exclusion of probability was 0.999, when 13 microsatellite loci were used for analysis in the individual identification system. Inbreeding was calculated as the difference between observed and expected heterozygosity. Observed homozygosity was less than expected which reflects inbreeding of -3.7% indicating that there are genetic differences between bull-sires and bull-dams used to produce young bulls. The results obtained from this study demonstrate that the microsatellite DNA markers used in the present DNA typing are useful and sufficient for individual identification and parentage verification without accurate pedigree information.


  1. Arora, R. and S. Bhatia. 2004. Genetic structure of Muzzafarnagari sheep based on microsatellite analysis. Small Rumin. Res. 54:227-230
  2. Groenen, M. A. M., H. Cheng, N. Bumstead, B. F. Benkel, W. E. Briles, T. Burke, D. W. Burt, L. B. Crittenden, J. Dodgson, J. Hillel, S. Lamnot, A. Ponce de leon, M. Soller, H. Tahahashi and A. Vignal. 2000. A consensus map of the chicken genome. Genome Res. 137-134
  3. Marshall, T. C., J. Slate, L. E. B. Kruuk and J. M. Pemberton. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mole. Ecol. 7:639-655
  4. Moioli, B., A. Georgoudis, F. Napolitano, G. Catillo, E. Giubilei, C. Ligda and M. Hassanane. 2001. Genetic Diversity between Italian, Greek and Egyptian buffalo populations. Livest. Prod. Sci. 70:203-211
  5. Lukas, F. K. and M. W. Donald. 2002. Inbreeding effects in wild populations. Trends in Ecology and Evolution, 5:230-241
  6. Slate, J., T. C. Marshall and J. M. Pemberton. 2000. A retrospective assessment of the accuracy of the paternity inference program Ceruvs. Mole. Ecol. 9:801-808
  7. Wang, X., H. H. Caol, S. M. Geng and H. B. Li. 2004. Genetic Diversity of 10 indigenous pig breeds in china by using microsatellite markers. Asian-Aust. J. Anim. Sci. 17(9):1219- 1222
  8. Dorji, T., O. Hanottel, M. Arbenz, J. E. Rege and W. Roder. 2003. Genetic Diversity of indigenous cattle populations in Bhutan: Implications for conservation. Asian-Aust. J. Anim. Sci. 16(7):946-951
  9. Marshall, T. C. 2000. A program designed for a large-scale parentage analysis using codominance loci (CERVUS, version 2.0). University of Edinburgh, UK
  10. Sasazaki, S., T. Honda, M. Fukushima, K. Oyama, H. Mannen, F. Mukai and S. Tsuji. 2004. Genealogical relationship between pedigree and microsatellite information and analysis of genetic structure of a highly inbred Japanese black cattle strain. Asian- Aust. J. Anim. Sci. 17(10):1355-1359
  11. Goldstein, D. B. and D. D. Polack. 1997. Launching microsatellites: A review of mutation process and methods of phylogenetic inference. J. Hered. 10:335-342
  12. Grawford, A. M., K. G. Dodds, A. J. Ede, C. A. Pierson, G. W. Montgomery, H. G. Garmonsway and A. E. Battie. 1995. An Autosomal genetic linkage map of the sheep genome. Genet. 140:703-724
  13. Yoon, D. H., H. S. Kong, J. D. Oh, J. H. Lee, B. W. Cho, J. D. Kim, K. J. Jeon, C. J. Jo, G. J. Jeon and H. K. Lee. 2005. Establishment of an individual identification system based on microsatellite polymorphisms in Korean Cattle (Hanwoo). Asian-Aust. J. Anim. Sci. 18(6):762-766
  14. Barker, J. S. F., S. S. Moore, D. J. S. Hetzel, D. Evans, S. G. Tan and K. Byrne. 1997. Genetic diversity of Asian water buffalo (Bubalus bubalus) microsatellite variation and a comparison with protein-coding loci. Anim. Genet. 28:103-115
  15. Guo, S. W. and E. A. Thompson. 1992. Performing the exact test of hardy-wienberg proportions for multiple alleles. Biomet. 48:361-372
  16. Hines, H. C. 1999. Blood groups and biological polymorphisms. In: Genetics of cattle. (Ed. R. Fries and A. Ruvinsky), CABI Publishing
  17. Estoup, A., F. Rousset, Y. Michalakis, J. M. Cornuet, M. Adriamanga and R. Guyomard. 1998. Comparison analysis of microsatellite and allozyme markers, a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Mol. Ecol. 7:339-353
  18. Glowtzki-Mullis, M., C. Gaillard, G. Wigger and R. Fries. 1995. Microsattelite based parentage control in cattle. Anim. Genet. 26:7-12
  19. Botstein, D., R. L. White, M. Skolnick and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am. J. Human Genet. 32:314- 331
  20. Hedrick, P., R. Fredrickson and H. Ellegren. 2001. Evaluation of d2, a microsatellite measure of inbreeding and outbreeding in wolves with a known pedigree. Evolution, 55:1256-1260
  21. Yeh, F. C., R. C. Yang and T. Boyle. 1999. POPGENE, version 1.31. Microsoft windows-based Freeware for population genetic analysis. Molecular Biology and Technology Center, University of Alberta, Canada
  22. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genet. 89:583- 590
  23. Van Marle-Koster, E. and L. H. Nel. 2003. Genetic markers and their application in livestock breeding in South Africa: A review. South African J. Anim. Sci. 33:1-10
  24. Peelman, L. G., F. Mortiaux, A. Van zevern, A. Dansercoer, G. Mommens, F. Coopman, Y. Bouquet, A. Burny, R. Renaville and V. Portetelle. 1998. Evaluation of the genetic variabillity of 23 bovine microsatellite markers in four Belgian cattle breeds. Anim. Genet. 29:161-167
  25. Hartl, D. L. and A. G. Clark. 1989. Effective allele number. In: Principle of population genetics, 2nd ed. Sinaure Associates, (Ed. M. A. Stunderland), p. 125
  26. Vignal, A., D. Milan, M. SanCristobal and A. Eggen. 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Selec. Evol. 34:175-305
  27. Lubieniecka, J., G. Grzybowski, T. Grzybowski, D. Miscicka- Sliwka, K. Lubieniecka and J. Czarny. 1999. Polymorphism at microsatellite loci in Piedmontese cattle by automated DNA sizing technology. Anim. Sci. 2:25-34
  28. Taylor, J. F., A. Eggen, A. Aleysasin, S. M. Armitage, W. Barendse, J. E. Beever, M. D. Bishop, R. A. Bernnenman, B. M. Burns, S. K. Davis, K. T. Elo, B. Harizius, S. M. Kappes, J. W. Keele, S. J. Kemp, B. W. Kirkpatrick, H. A. Lewin, R. Z. Ma, R. A. McGrwa, D. Pomp, R. T. Stone, Y. Sugimoto, A. J. Teal, D. Vaiman, J. Viokki, J. L. Williams, C. Yeh and M. C. Zanotti. 1998. Report of the first workshop on the chromosome on the genetic map of bovine chromosome 1. Anim. Genet. 29:228- 235