Genetic Diversity of 14 Indigenous Grey Goose Breeds in China Based on Microsatellite Markers

  • Tu, Yunjie (Poultry Institute, Chinese academy of agriculture science) ;
  • Chen, K.W. (Poultry Institute, Chinese academy of agriculture science) ;
  • Zhang, S.J. (Poultry Institute, Chinese academy of agriculture science) ;
  • Tang, Q.P. (Poultry Institute, Chinese academy of agriculture science) ;
  • Gao, Y.S. (Poultry Institute, Chinese academy of agriculture science) ;
  • Yang, N. (College of Animal Science and Technology China Agricultrual University)
  • Received : 2005.05.03
  • Accepted : 2005.09.15
  • Published : 2006.01.01


This experiment first cloned some microsatellite sequences for goose species by magnetic beads enriched method and studied the genetic structure research of 14 indigenous grey goose breeds using 19 developed and 12 searched microsatellite markers with middle polymorphism. According to the allele frequencies of 31 microsatellite sites, mean heterozygosity (H), polymorphism information content (PIC) and $D_A$ genetic distances were calculated for 31-microsatellite sites. The results showed that 25 of 31microsatellite sites were middle polymorphic, so the 25 microsatellite markers were effective markers for analysis of genetic relationship among goose breeds. The mean heterozygosity was between 0.4985 and 0.6916. The highest was in the Xupu (0.6916), and in the Yan was the lowest (0.4985) which was consistent with that of PIC. The phylogenetic tree was completed through analysis of UPGMA. Fencheng Grey, Shoutou, Yangjiang and Magang were grouped firstly, then Xongguo Grey, Wugang Tong, Changle and Youjiang were the second group; Gang, Yan Xupu and Yili were the third group; Yongkang Grey and Wuzeng were the fourth group. The results could provide basic molecular data for the research on the characteristics of local breeds in the eastern China, and a scientific basis for the conservation and utilization of those breeds.


Microsatellite;Goose;Genetic Diversity


Supported by : Ministry of Agriculture


  1. Brown, S. M., M. S. Hopking and S. E. Mitchell. 1996. Multiple methods for the identification of polymophic simple sequence repeats (SSRs) in sorghum. [Sorghum bicolor (L) Moench]. Theor. Appl. Genet. 93:190-198
  2. Chen, G. H., X. S. Wu, D. Q. Wang, J. Qin, S. L. Wu, Q. L. Zhou, F. Xie, R. Cheng, Q. Xu, X. Y. Zhang and O. Olwofeso. 2004. Cluster Analysis of 12 Chinese Native Chicken Populations using Microsatellite Markers. Asian-Aust. J. Anim. Sci. 17(8):1047-1052
  3. Nei, M. 1972. Genetic distance between populations. Am. Nature. 106:283-291
  4. Gao, G. Q., G. H. He and Y. R. Li. 2003. Microsatellite Enrichment from AFLP fragments by megnetic beads, Acta Botanica sinica. 45(11):1266-1269
  5. Li, M. H., E. Nogovitsina, Z. Ivanova, G. Erhardt, J. Vilkki, R. Popv, I. Ammosov, T. Kiselyova and J. Kantanen. 2005. Genetic Contribution of Indigenous Rakutian Cattle to Two Hybrid Populations Revealed by Microsatellite Variation. Asian-Aust. J. Anim. Sci. 18(5):613-619
  6. Fischer, D. and K. Bachmann. 1998. Microsatellite Enrichment in organisms with large genomes (Allium cepa L). Bio Techniques. 394:796-802
  7. Goldstein, D. B., A. R. Linares, L. L. Cavalli-Sforza and M. W. Feldman. 1995. An evaluation of genetic distances for use with microsatellite loci. Gene. 139:463-471
  8. Osma, S. A. M., M. Sekino, M. Nishibori, Y. Yamamoto and M. Tsudzuki. 2005. Genetic Variabity and Relationships of native Japanese Chickens Assessed by Microsatellite DNA Profiling. Asian-Aust. J. Anim. Sci. 18(6):755-761
  9. Zhang, J. H., Y. Z. Xiong and C. Y. Deng. 2005. Correlations of Genic Heterozygosity and Variances with Heterosis in a Pig population Revealed by Microsatellite DNA Marker. Asian-Aust. J. Anim. Sci. 18(5):620-625
  10. Crawford, A. M. and R. P. Littlejohn. 1998. The use of DNA marker in deciding conservation priorities in sheep and other livestock. Anim. Gen. Res. Inform. 23:21-26
  11. Kijas, J. M. H., J. C. S. Fowler and C. A. Garbett. 1994. Microsatellite Enrichment from the citrus genome using biotinylated oligonucleotide sequences bounds to streptavidincoated gnetic particles. Bio Techniques. 16:657-662
  12. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Gene. 89:583- 590
  13. Appannavar, M. M., M. G. Govindiaiah and K. P. Ramesha. 2003. Genetic Distance Study among Deoni Breed of cattle using Random Amplified DNA Markers. Asian-Aust. J. Anim. Sci. 16(3):315-319
  14. Casacuberta, E., P. Puigdomenech and A. Monfort. 2000. Distribution of Microsatellite in relation to coding sequences within the Araabidopsis thaliana genome. Plant Sci. 157:97- 104
  15. Olowofeso, O., J. Y. Wang, J. C. Shen, K. W. Chen, H. W. Sheng, P. Zhang and R. Wu. 2005. Estimation of the cultivative power of discrimination in Haimen chicken populations with ten microsatellite markers. Asian-Aust. J. Anim. Sci. 18(8):1066- 1070
  16. Xu, G. F. and K. W. Chen. 2004. "Photograph Album of China Indigenous Poultry Breeds". 216-265
  17. Noah, A., B. Terry, E. Kari and Marcus W. Feldman. 2004. Empirical Evaluation of Genetic Clustering Methods Using Multilocus Genotypes From 20 chicken Breeds. Genetics 159:699-713
  18. Thevenon, L. T., L. Thur, V. Ly, F. Maudet, A. Bonnet, P. Jarne and J. C. Maillard. 2004. Microsatellite Analysis of Genetic diversity of the Vietnamese Sika Deer. Heredity 95(1):11-18
  19. Pandy, A. K., D. Kumar, R. Sharma, I. Sharma, R. K. Vijh and S. P. S. Ahlawat.2005. Population structure and genetic bottleneck analysis of Ankleshwar poultry breed by Microsatellite makers. Asian-Aust. J. Anim. Sci. 18(7):915-916
  20. Selvi, P. K., J. M. Panandam, K. Yusoff and S. G. Tan. 2004. Molecular Characterization of the Mafriwal Diary cattle of Malaysia using Microsatellite Markers, Asian-Aust. J. Anim. Sci. 17(10):1366-1368
  21. Wang, X., H. H. Gao, S. M. Geng and H. B. Li. 2004. Genetic diversity of 10 indigenous pig breeds in Chinaby using microsatellite markers. Asian-Aust. J. Anim. Sci. 17(9):1219- 1222
  22. Cathy, J. C. 2001. Microsatellite markers in Canada geese (Branta canadensis), brief communication. 173-175
  23. Islam, M. S, A. S. I. Ahmed, M. S. Azam and M. S. Alam. 2005. Genetic Analysis of Three River Populations of catla catla (HAMILTON) using Randomly Amplyfied Polymorphic DNA Markers. Asian-Aust. J. Anim. Sci. 18(4):453-457
  24. Rana, R. S, K. V. Bhat, S. Lakhanpal and W. S. Lakra. 2004. Comparative Genetic Diversity in Natural and Hatchery Populations of Indian Major Carps. Asian-Aust. J. Anim. Sci. 17(9):1119-1203
  25. Barker, J. S. F. 1994. A global protocol for determining genetic distance among domestic livestock breeds. In: Proceeding of 5th world congress on genetic Application of Livestock Production. 21:501-508
  26. Sasazaki, S., T. Honda, M. fukushima, K. Oyama, H. Mannen, F. Mukai and S. Tsuji. 2004. Geneaalogical Relationship between pedigree and Microsatellite Information and Analysis of Genetic Structure of a Highly Inbred Japanese Black Cattle Strain. Asian-Aust. J. Anim. Sci. 17(10):1355-1359
  27. Hak, Yoon D., S. Kong and Jae-Don Oh. 2005. Establishment of an Individual Identification System Based on Microsatellite Polymorphisms in Korean Cattle (Hanwoo). Asian-Aust. J. Anim. Sci. 18(6):762-766

Cited by

  1. Evaluation of genetic diversity of Chinese native geese revealed by microsatellite markers vol.63, pp.03, 2007,
  2. Monitoring conservation effects on a Chinese indigenous chicken breed using major histocompatibility complex B-G gene and DNA Barcodes vol.31, pp.10, 2018,
  3. Survey of genetic structure of geese using novel microsatellite markers vol.31, pp.2, 2018,
  4. Applicability of anatid and galliform microsatellite markers to the genetic diversity studies of domestic geese (Anser anser domesticus) through the genotyping of the endangered zatorska breed vol.4, pp.1, 2011,