Chemical Composition of *Prunus mume* Flower Varieties and Drying Method

Yong-Doo Kim*, Myung-Hwa Jeong¹, I-Ran Koo², In-Kyung Cho³.
Sang-Ho Kwak⁴, Bo-Eun Kim and Ki Man Kim

Department of Food Science and Technology, Sunchon National University, Sunchon 540-742, Korea
¹Sunchon Agricultural Technology Center, Sunchon 540-804, Korea
²Soo Hyang Farm Co. Ltd., Kwangyang 545-822, Korea
³Department of Food Science and Technology, Namju University, Gwanju 506-302, Korea
⁴Department of Packaging and Logistics, Sunchon Cheongam College, Sunchon 540-743, Korea

Abstract

Prunus mume is extensively cultivated as a fruit and medicinal plant in Korea. Recently, *prunus mume* has a pressing problem with an increase of *prunus mume* cultivation area in southern part in Korea. Chemical properties of *prunus mume* flower to determine the optimum processing varieties for tea were investigated. Three kinds of samples treated with fresh, freeze dry and shade dry were used. The contents of moisture, crude ash, crude protein, crude fiber, crude fat and nitrogen free extract of *prunus mume* flower varieties were to 82–85% 0.2–0.6% 2.5–3.1% 2.5–3.1% 0.6–0.8% and 10–11% respectively. The main component of free sugars in *prunus mume* flower was glucose and those of organic acids were citric and malic acids. 17 kinds of amino acids were determined from *prunus mune* flower. The total amino acid contents of Cheongchak, Backgaba and Goseong were 760.47 mg%, 624.01 mg% and 807.41 mg%, respectively. Aspartic acid, glutamic acid and lysine were the major components in 3 cultivars. The content of K was much higher than Ca, Mg, Na, Fe and Zn. The major fatty acids of *prunus mume* flower were myristic acid, palmitoleic acid and oleic acid. As a result of analysis, there were no significant differences among the three cultivars of *prunus mume* flower and drying method.

Key words: *prunus mume* flower, chemical properties, fresh, freeze dry, shade dry.

서 론

매화의 분포는 한국, 일본, 중국으로 짧은 지역으로 멸종할 위기에 처한 나무로, 전형적인 한방 요소로 사용되고 있다. 매화는 품질에 따라 양균, 품종에 따라 différentes 다양성의 품질을 가지므로, 연해 época에 제브릴 때는 매화나무는 빠르고, 특히 불순한 절식을 막을 겨를 수 있다. 반면에 매화나무는 완전한 몰수를 막기 위해 불순한 정기를 방지하기 위해, 영양을 목적으로 제브릴 때는 매화나무와 빠르며(3-6), 우리나라 남부지방에서 묘는 3월에 얻으나 먼지 피고 연한 온도를 매우 빠르며 항기의 약간. 보통 1-3개의 묘를 달리며 묘 색은 백색, 닭고자가, 황색 등 품종의 따라 여러 가지이다.

최근 몇 년 사이에 매화 재배의 간격과 급속히 증가하고 있어 현재와 같은 매화 소비 형태로는 과잉 생산이 의문에 문제가 아닌까 생각하여 새로운 형태의 가공법의 개발이 절실히 필요하며(7,8), 또한 국민소득 향상과 건강지향의 요구 증가에 따라 다양한 기호식품의 요구 현상과 함께 다양한 형태의
올로 문화가 확산되고 있다(9-11). 그러나 매화에 관한 여러 분야에서의 연구 활동은 활발하나(9) 매화에 관한 연구가 미흡하여 이와 같은 식물학의 다변화에 따라 관심을 높이려니가, 반면에 이러한 매화를 이용한 매화를 개발함으로써 소비자의 요구에 부응하고, 농가소득 증대와 매화의 소비를 진지시키고자 매화의 품종별 화학성분을 분석하여 매화를 개발하기 위한 기초 자료로 이용하고자 본 연구를 수행하였다.

제료 및 방법

제료

일반성분
일반 성분은 AOAC법(15)에 준하여 수분은 105℃ 적정건조법, 화소는 550℃ 적정화학법으로, 조단백은 micro-Kjeldahl법, 조지방은 soxhlet 추출법으로, 조성유의 함량은 H2SO4-NaOH 분해법으로 구하였다. 그리고, 가용성 무질소물의 함량은 봉의성분에서 조지방, 조단백질, 조지방, 조성유의 함량을 빼 놓으므로 계산하여 구하였다.

유리당 분석
유리당 성분은 Wilson 등(16)의 방법에 따라 분석하였다. 즉, 각각의 매화 5g에 증류수를 가하여 마쇄하여 교반한 후, 침축시간 후 100 mL로 정량한 다음 원심분리(3,000×g, 30 min)한 후 원심 분리한 상동액을 취하여 여과(Whatman No.2)하고 Sepak C8으로 정제시간 동안 0.45 µm membrane filter(Millipore Co. USA)으로 여과하여 배출하였으며, 양은 적분계에 의한 외부표준법으로 계산하였고, HPLC조건은 Table 1과 같다.

유기산 분석
유기산의 성분은 유리당의 방법과 동일하게 처리 후 HPLC를 이용하여 Table 1의 조건으로 분석하였다.

구성 아미노산 분석
매화 0.5g을 시험관에 넣고 6 N HCl 용액 10 mL을 가하여 120℃에서 24시간 가수분해하여 원심분리하고 상동액을 강압 농축한 후 구연산나트륨완충액(pH 2.2) 5 mL로 정령하고 0.22 µm membrane filter로 여과하여 아미노산 자동분석기(LKB 4150, Alpha, UK)로 분석하였다.

<table>
<thead>
<tr>
<th>Table 1. HPLC analysis condition of free sugar and organic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Instrument</td>
</tr>
<tr>
<td>Detector</td>
</tr>
<tr>
<td>Column</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Solvent</td>
</tr>
<tr>
<td>Column temp.</td>
</tr>
<tr>
<td>Flow rate</td>
</tr>
<tr>
<td>Injection volume</td>
</tr>
</tbody>
</table>

유리아미노산 분석
유리아미노산은 Ohara와 Ariyoshi(17)의 방법에 따라 분석하였다. 즉 각각의 매화 5g을 homogenizer로 바 맞이 30 mL로 정량한 후 원심분리(16,000×g, 30 min)하여 상동액 10 mL에 sulfoisalicylic acid 25 mg를 접착하고 4℃에서 4시간 동안 방치시킨 후 원심분리하여 상동액을 0.22 µm membrane filter로 여과하여 아미노산 자동분석기에 의해 분석하였다.

지방산 분석
동결건조시 3g에 메탄올과 디에틸에테르를 가하여 교반으로서 침축시간 후 100 mL로 정량하여 얻은 지질 분획을 10 mL 취하여 용액을 완전히 제거한 후 Wimshurst의 방법(20)에 따라 BF3-methanol을 이용하여 methyl ester로 조제하여 분석시험 시료로 하였다. 즉, 지방시험 시료의 0.5 N methanolic sodium hydroxide 2 mL를 가하여 5분간 환류 가열하였다. 그 후 14% BF3-methanol 2 mL로 가베 2분간, 또 n-hexane 4 mL을 가하여 2-3분간 가열하고, 여기에 sodium chloride 포화용액을 충분히 가하여 발치한 후, 상층에 일부를 취하여 무수 Na2SO4로 수분을 제거하여 gas chromatography로 분석하였다. 이 분석조건은 Column은 DB-WAX 20M(J&W, USA), detector는 FID, column temp.는 150-200℃, GC는 5890 Series-II GC(Hewlett Packard Co. USA) 였다.

비타민 C 분석
Vitamin C의 분석은 Anan분석법(21)에 준하여 매화의 진조법 시료 0.2g를 100 mL messflask에 넣고 2% metaphosphoric acid용액을 80 mL가해 실온에서 30분간 추출 후 100 mL로 정령한 원심분리 후 상동액을 0.45 µm membrane filter(Millipore Co. USA)로 여과한 여액을 Sepak C8으로 정제하여 HPLC로 분석하였다. 분석조건은 column은 µ-Bondapak C18을 detector는 UV 260nm (Waters Co.
한국식품자급유동화학지 제13권 제2호 (2006)

USA), HPLC는 Waters associates M 244 (Waters Co. USA)를 이용하여 분석하였다.

무기성분 분석
매화의 무기성분은 습식분해법(14,18)에 따라 시료 1 g에 증류수 10 mL, 농정산 6 mL, 과산화수소 1 mL를 가한 후 Microwave digestion system(MSP-1000, CEM Co., USA)을 이용하여 최고 600 W로 총 20분간 산분해하여 전처리된 시험용액을 원자흡광양계계(19)(Analyst 300, Perkin Elmer, USA)로 분석하였다.

결과 및 고찰

일반성분 분석
매화의 품종과 긴조방법에 따른 일반성분은 Table 2와 같다. 생육과 기준으로 수분 함량은 82.5-84.2, 조성유 2.5-3.1, 조성질 2.6-3.1, 조성비 0.67-0.84, 조화분 0.22-0.60% 이었으며, 가용성 무질소분은 10.1-11.2%로 나타났다. 이와 같은 결과는 Kwon 등(12)이 보고한 아카시야 꽃과 비교해 보았을 때 조성질의 경우 2.92%로 아카시야 꽃의 함량이 높게 났으나, 조성비는 0.26%로 매화에서 3배 이상 높게 검출되었다. 매화의 품종별로 정성함량을 살펴본 수분과 조성질은 고성에서 가장 많았고, 조성유, 조성비, 조화분은 청축, 가용성무질소분은 백가하에서 가장 많은 양이 검출되었다. 그러나 전체적으로 볼 때 품종에 따른 일반성분 함량의 차이는 크지 않았다. 긴조방법에 따른 일반성분 분석 결과 동절건조시와 음건시의 수분은 각각 16.4와 13.3%로 나타났다, 긴조방법에 따른 각 성분의 함량비율은 크게 변하지 않았다.

Table 2. Proximate composition of Prunus mume flowers

<table>
<thead>
<tr>
<th>Composition</th>
<th>Cheongchuk</th>
<th>Backgaha</th>
<th>Goseong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>83.4</td>
<td>16.4</td>
<td>13.3</td>
</tr>
<tr>
<td>Crude fiber</td>
<td>2.5</td>
<td>12.1</td>
<td>14.6</td>
</tr>
<tr>
<td>Crude protein</td>
<td>2.6</td>
<td>13.2</td>
<td>15.5</td>
</tr>
<tr>
<td>Crude fat</td>
<td>0.8</td>
<td>4.3</td>
<td>4.9</td>
</tr>
<tr>
<td>Crude ash</td>
<td>0.6</td>
<td>3.1</td>
<td>3.8</td>
</tr>
<tr>
<td>Nitrogen free extract</td>
<td>10.2</td>
<td>50.9</td>
<td>47.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organic acids</th>
<th>Cheongchuk</th>
<th>Backgaha</th>
<th>Goseong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citric acid</td>
<td>0.82</td>
<td>3.28</td>
<td>3.25</td>
</tr>
<tr>
<td>Malic acid</td>
<td>0.41</td>
<td>0.92</td>
<td>0.84</td>
</tr>
<tr>
<td>Succinic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Formic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3. Contents of free sugars in Prunus mume flowers

<table>
<thead>
<tr>
<th>Free sugar</th>
<th>Cheongchuk</th>
<th>Backgaha</th>
<th>Goseong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>1.4</td>
<td>8.6</td>
<td>9.6</td>
</tr>
<tr>
<td>Fructose</td>
<td>3.2</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Sucrose</td>
<td>0.17</td>
<td>0.23</td>
<td>0.14</td>
</tr>
</tbody>
</table>

유기산 분석
매화의 생육, 동절건조, 음건의 유기산의 분석결과는 Table 4와 같다. 청축 생육은 citric acid와 malic acid가 각각 0.82%, 0.41% 검출 되었으며 succinic acid, formic acid는 검출이 되지 않았다. 청축 동절건조와 음건의 경우 각각 citric acid 3.28%, 3.25%, malic acid 0.92%, 0.84%로 나타났다. 품종별 함량은 청축>고성>백가하순으로 나타났다.

Table 4. Contents of organic acids in Prunus mume flowers

<table>
<thead>
<tr>
<th>Organic acids</th>
<th>Cheongchuk</th>
<th>Backgaha</th>
<th>Goseong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citric acid</td>
<td>0.82</td>
<td>3.28</td>
<td>3.25</td>
</tr>
<tr>
<td>Malic acid</td>
<td>0.41</td>
<td>0.92</td>
<td>0.84</td>
</tr>
<tr>
<td>Succinic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Formic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

아미노산 분석
매화의 구성 및 유라이나미노산을 품종별로 분석한 결과는 Table 5, 6과 같다. 구성 아미노산의 총량은 청축 760.47 mg%, 백가하 624.01 mg% 및 고성이 807.41 mg%로 고성이 다른 품종에 비하여 아미노산 함량이 높게 나타났다. 아미
노산은 체 풍종 모두 aspartic acid의 함량이 가장 높게 나타났다.
유리아미노산은 창출 204.21 mg%, 백가하 190.3 mg%,
즉 성 145.07 mg%로 구성비의 비율이 높게 나타났으며,
풍종별 주요 유리아미노산의 함량은 창출의
경우 arginine이 27.56 mg%로 가장 많았고, 백가하와 성은 각각 valine 30.52 mg%, alanine 27.41 mg%로 나타나
풍종별 구성비율은 다소 달랐으나 뛰어남은 큰 차이가
있었다. 또한 Cha 등(13)이 보고한 동백나무 꽃으로 만든
화차의 주요 유리아미노산의 경우 Cys>Pro>Tyr>Pro>Thr
순으로 매화와는 서로 다른 결과를 보여주었다.

지방산 분석
지방산 분석결과는 Table 7과 같다. 주요 지방산 조성을
<Game> 47.7 증후에 관계없이 총 7종의 지방산이 검출되었다.
각 성분의 구성비율을 비교해 본 결과 palmitoleic acid가 창출,
백가하, 성 성의 풍종에서 28.3%, 24.1%, 21.02%로
가장 높은 비율을 차지하였고, myristic acid가 23.17%,
21.3%, 19.1%, oleic acid가 21.76%, 20.22%, 18.2%로 순으
로 나타났다.

비타민 C 함량
매화의 비타민 C 함량은 Table 8와 같다. 성화의 경우
창출 64.3 mg%, 백가하 85.4 mg%, 성성 70.2 mg%로 나타났다.
이는 Kwon 등(12)이 보고한 아카시아 꽃의 생화 21.5
mg%, 창조식물 160.44 mg%, Park(14)이 보고한 녹차분말
의 312~392 mg% 보다 많이 함유되어 있음을 확인하였다.
생조식물 세포내의 비타민 C 함량은 동결건조 시료에서
음과 비슷하다고 나타났다.

Table 6. Free amino acids contents of Prunus mume flowers (mg %)

<table>
<thead>
<tr>
<th>Amino acids</th>
<th>Cheongchuk</th>
<th>Baekga-ha</th>
<th>Goseong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspartic</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Serine</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Threonine</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Glutamic</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Proline</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Glycine</td>
<td>23.87</td>
<td>25.16</td>
<td>22.12</td>
</tr>
<tr>
<td>Alanine</td>
<td>15.98</td>
<td>11.79</td>
<td>27.41</td>
</tr>
<tr>
<td>Cystine</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Valine</td>
<td>15.5</td>
<td>30.52</td>
<td>13.13</td>
</tr>
<tr>
<td>Methionine</td>
<td>18.43</td>
<td>19.93</td>
<td>9.01</td>
</tr>
<tr>
<td>Leucine</td>
<td>26.83</td>
<td>25.38</td>
<td>12.48</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>5.85</td>
<td>9.34</td>
<td>4.77</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>19.46</td>
<td>7.53</td>
<td>7.56</td>
</tr>
<tr>
<td>Histidine</td>
<td>25.8</td>
<td>21.8</td>
<td>12.21</td>
</tr>
<tr>
<td>Lysine</td>
<td>24.93</td>
<td>12.34</td>
<td>14.24</td>
</tr>
<tr>
<td>Arginine</td>
<td>27.56</td>
<td>26.31</td>
<td>22.14</td>
</tr>
<tr>
<td>Total amino acid</td>
<td>176.65</td>
<td>163.99</td>
<td>122.93</td>
</tr>
</tbody>
</table>

Table 7. Composition of fatty acids in Prunus mume flowers (%)

<table>
<thead>
<tr>
<th>Fatty acids</th>
<th>Cheongchuk</th>
<th>Baekga-ha</th>
<th>Goseong</th>
</tr>
</thead>
<tbody>
<tr>
<td>myristic</td>
<td>23.17</td>
<td>21.3</td>
<td>19.1</td>
</tr>
<tr>
<td>palmitic</td>
<td>7.28</td>
<td>5.12</td>
<td>6.14</td>
</tr>
<tr>
<td>palmitoleic</td>
<td>28.3</td>
<td>24.1</td>
<td>21.02</td>
</tr>
<tr>
<td>stearic</td>
<td>5.03</td>
<td>4.61</td>
<td>4.03</td>
</tr>
<tr>
<td>oleic</td>
<td>21.76</td>
<td>20.22</td>
<td>18.2</td>
</tr>
<tr>
<td>linoleic</td>
<td>6.58</td>
<td>7.11</td>
<td>7.02</td>
</tr>
<tr>
<td>linolenic</td>
<td>7.85</td>
<td>6.51</td>
<td>6.32</td>
</tr>
</tbody>
</table>

Table 8. Contents of vitamin C in Prunus mume flowers (mg %)

<table>
<thead>
<tr>
<th></th>
<th>Cheongchuk</th>
<th>Baekga-ha</th>
<th>Goseong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vit C</td>
<td>64.3</td>
<td>48.85</td>
<td>44.23</td>
</tr>
</tbody>
</table>

Refer to the legend in Table 2.
무기성분 분석
매화의 생화, 동결건조, 올건의 무기성분의 함량은 Table 9와 같다. 무기성분 함량은 K>Ca>Mg>Na>Fe>Zn 순으로 나타났으며, 건조병 무기성분 함량을 보면 올건한 시료가 동결 건조된 시료보다 다소 높게 나타났다. 품종별 무기성분 함량 K는 고성이 가장 높게 나타났으나, Ca와 Mg는 정축이 가장 높았다.

감사의 글
본 연구는 순천대학교 2005년 자체 연구비에 의해 수행된 결과로 이에 감사드립니다.

참고문헌
5. 乙黒親男 (1994) 小倉'甲州小梅'果雑の熟度と収穫に伴う果果硬度と細胞壁多糖類の変化. 日本食品工業学会誌, 41,498-504
6. 乙黒親男, 金子憲太郎 (1994) 小倉梅けの硬度と細胞壁多糖類の変化. 日本食品低溫保存学会誌, 20, 115-120

요약
매화의 품종과 건조방법에 따른 화학성분을 분석하여 매화차를 개발하기 위한 기초 자료로 이용하고자 본 연구를 수행한 결과 매화의 건조법, 품종별 일반성분은 생화를 기준으로 수분 함량은 82.5-84.2%, 조소유 2.5-3.1%, 조단백질 2.6-3.1%, 조지방 0.67-0.84%, 조화분 0.22-0.60% 이었으며, 가용성 무기질소분은 10.1-11.2%로 나타났으며, 동결 건조에서는 수분 16.4%, 올건 13.3%로 나타났다. 품종에 따른 일반성분은 품종 함량을 제외하고는 큰 차이가 없었다. 매화의 생화, 동결건조, 올건의 유리당 분석결과 fructose, glucose가 검출되었으며 sucrose는 생화를 제외한 동결건조와 올건시료에서 미량 검출되었다. 품종에 따른 유리당 함량은 큰 차이가 없었다. 청축 생화 유기산 분석결과 citric acid, malic acid가 각각 0.82%, 0.41% 검출 되었고 품종별 함량은 청축>고성>백가히순으로 나타났다. 매화의 품종별 무기성분의 함량은 3품종 모두 K가 가장 높았으며 건조병 무기성분 함량을 보면 올건한 시료가 동결 건조된 시료보다 다소 높게 나타났다. 주요 지방산으로는 각각의 품종별로 palmitoleic acid가 가장 많았고 건조병으로는 지방산 함량이 큰 차이가 없는 것으로 나타났다. 매화의 비타민 C 함량은 청축의 경우 생화 64.3 mg%, 동결건조 480.5 mg%, 올건 442.3 mg%로 나타났다. 품종별로 구성 아미노산의 함량을 살펴보면 세 품종 모두 aspartic acid의 함량이 가장 높게 나타났고, 유라미노산의 경우 총 함량은 청축>백가
Physiochemical properties of flower tea according to the mixture ratio by flower material. J. Kor. Tea Soc. 6, 85-93

(검수 2005년 12월 22일, 채택 2006년 3월 24일)