Content-Based Image Retrieval Using Visual Features and Fuzzy Integral

Young-Jun Song(songyjorg@dreamwiz.com), Dong-Woo Kim(dubssi@paran.com), Nam Kim(namkim@cbnu.ac.kr), Mi-Hye Kim(mhkim@cbnu.ac.kr)

Abstract

This paper proposes visual–feature extraction for each band in wavelet domain with both spatial frequency features and multi resolution features, and the combination of visual features using fuzzy integral. In addition, it uses color feature expression method taking advantage of the frequency of the same color after color quantization for reducing quantization error, a disadvantage of the existing color histogram intersection method. Also, it is found that the final similarity can be represented in a linear combination of the respective factors (Homogram, color, energy) when each factor is independent one another. With respect to the combination patterns the fuzzy measurement is defined and the fuzzy integral is taken. Experiments are performed on a database containing 1,000 color images. The proposed method gives better performance than the conventional method in both objective and subjective performance evaluation.

Keyword: CBIR, Fuzzy Integral, Feature Extraction, Visual Features

1. Introduction

Content-based Image Retrieval (CBIR) has been widely used since the 1992 proposal of Kato[1]. In CBIR, user can retrieve, easily, images that he or she wants, by taking advantage of feature value representing visual properties like image color, shape, texture, etc. Therefore, the most important is effective extraction of such low-level visual features representing image as color image, shape, texture,
method using fuzzy integral based on the conventional visual features. The combination of 3 visual features is decided by fuzzy measure and fuzzy integral. And this approach shows stable and reliable retrieval results for CBIR.

Chapter 2 describes the proposed visual feature extraction method, and similarity measurement method; Chapter 3 describes Simulation measurement; Chapter 4 shows a simulation result, and finally, Chapter 5 comes to a conclusion.

II. Visual-feature extraction method

1. Homogram & Energy features

The existing histogram method considered only the gray level value or color level value of each pixel within image, not spatial correlation between pixels; therefore, even images with different spatial pixel distribution can have the same histogram.

In order to overcome the disadvantage of the existing histogram method, Cheng, etc.[7] applied pixel-based fuzzy homogeneity function to image segmentation. It extracts fuzzy homogeneity function using the frequency component of LL band, wavelet transformation domain, and apply it to image retrieval.

It has transformed wavelet by using 9/7 tap biorthogonal wavelet filter[8]; then got LL, LH, HL, and HH band. N-number feature vectors have been extracted by LL band feature able to take advantage of sufficient spatial correlation in the form closely resembling an original image. A transaction process before extracting N-number features is as following.

step 1. Input image is normalized to M N size.
step 2. The normalized image is transformed into 1-level wavelet.
step 3. LL-band wavelet coefficients are
normalized to L-level values.

If LL-band wavelet coefficients normalized to
L-level values are defined as $c(i, j)$, it will result in
the following eq.(1). Here, i and j mean wavelet
coefficient index.

$$c(i, j) \in \{0, 2, 3, \cdots, L-1\}, \quad 0 \leq i \leq M/2, \quad 0 \leq j \leq N/2$$

Using normalized LL-band wavelet coefficients,
L-number homogram values are obtained in the LL
band of wavelet domain, then stored in image
database.

Also, the study extracted 3 feature vectors by
high-frequency band in wavelet band. As energy is
an instrument measuring the uniformity of
brightness, the energy value of each band is
obtained and stored in image database by its
relevant image feature vector. Energy value is
obtained by the square value of each coefficient.
Therefore, the energy value of each wavelet band is
obtained by eq.(2) - here $B \in \{LH, HL, HH\}$.

$$E(B) = \sum_{(i, j) \in B} c^2(i, j)$$

2. Color feature extraction techniques

The existing color histogram takes advantage of
only the frequency of the same color, not color
component like relevant color R, G, or B value, or
hue value. As a result, organizing color histogram
gets to absorb quantization error, as it is, resulting
from color quantization. Accordingly, Park, etc.
proposed a method using every color value and
frequency in order to overcome this disadvantage.

It took advantage of HSV color space able to
divide brightness and color difference for making
color feature more obvious: uniformly quantized H,
S, V value respectively into 4, 2, and 2 values, and
then divided into 16 color regions for dividing the
image region including similar colors. The
representative color and frequency of each divided
region were extracted as its features, and each
representative color had the average value R, G, and
B of each region.

Color feature extracted from image is expressed in
the type of vector as the following eq.(3).

$$\text{color feature} = [r_i, g_i, b_i, p_i], \quad i=1, 2, \text{CDOTS } M$$

Here, M means the total number of color; p_i means the ratio value of a relevant color with r, g,
or b: they all satisfy $\sum p_i = 1$. The size of color
feature vector extracted from one image is $M \times 4$
byte, occupying a tiny space.

III. Simulation measurement

1. General method

The purpose of CBIR system is retrieving the
most similar image to query image within image
database. Therefore, the method of obtaining
similarity between query image and target image
has a big influence on the performance of the total
system. The study has proposed distance calculation
(similarity calculation) method fit for 3 feature
components like color, homogram, and energy value.

As the color distance calculation method using the
existing color histogram takes advantage of only the
frequency of the same color, not color components
like relevant color values(R, G, or B), even similar
visual images no longer have similarity because of color histogram movement by such component as illumination change.

Color histogram applies both the RGB value and frequency of each color to fuzzy color function, and measures similarity between query image and target image. If query image and target image are respectively I_1 and I_2, each image color feature can be expressed as [r, g, b, p]. At this time, similarity between the colors of two images is obtained by membership function like eq.(4). If two colors are similar, eq.(4) has a value of about 1; if not, it has 0.

$$\mu_A(c_1,c_2) = e^{-[(r_1-r_2)^2+(g_1-g_2)^2+(b_1-b_2)^2]} \tag{4}$$

Eq.(5), distance function D_2 transformed by similarity between these two color values, can find similarity between two images.

$$D^2(I_1,I_2) = \sum_{i=1}^{R} p_{i1}^2 + \sum_{j=1}^{G} p_{j1}^2 + \sum_{k=1}^{B} p_{k1}^2 - \sum_{i=1}^{R} \sum_{j=1}^{G} \sum_{k=1}^{B} 2\mu(I_1,I_2)p_{i1}p_{j1}p_{k1} \tag{5}$$

Here, I_1 is the color feature of query image, I_2 the color feature of target image, and B the number of colors.

The homogram set, H, of one image has 128 bins like in $H(0), H(1), \ldots, H(127)$; if 128 bins are all compared at the time of calculating homogram distance between two images, calculation gets to increase much more. Therefore, this study calculated homogram distance between two images by using the biggest 32 homogram values after arranging query image homograms according to frequency, not calculating similarity by the homogram set of query image. This is expressed in eq.(6).

$$D_H(Q,I) = \sum_{t\in H} |H_Q(t) - H_I(t)| \tag{6}$$

Here, Q means query image, and I target image. T_Q means 32 homogram indexes with the most biggest frequency of the homogram values of image Q.

Energy distance between query image and target image was obtained by eq.(7) using general Euclidian distance.

$$D_E(Q,I) = \sum_{B \in \{H, R, L, HRF\}} \left| E_Q(B) - E_I(B) \right| \tag{7}$$

The total distance between two images is obtained by the total difference in the energy value of each band of wavelet-transformed image.

2. The proposed method

The purpose of CBIR system is retrieving the most similar image to query image within image database. Therefore, the method of obtaining similarity between query image and target image has a big influence on the performance of the total system. This study proposes distance calculation (similarity calculation) method fit for 3 feature components like color, homogram, and energy. We use Sugeno’s[9] fuzzy integral and fuzzy measure in order to combine three features.

Since fuzzy measure and fuzzy integral, generalizing the usual definition of a classical measure by replacing the usual additive property by a weaker requirement, i.e the monotonicity property with respect to set inclusion, the concept of them has been often used in decision making. Subjective evaluation models using fuzzy integrals have been applied in various fields, and their effectiveness has been experimentally shown.
Fuzzy integral and fuzzy measure is explained as follows. In this paper, min and max are denoted \wedge, \vee respectively. Let X be a non-empty set, \mathcal{A} be a σ-algebra of subsets of X.

A set function $g : \mathcal{A} \rightarrow [0, 1]$ is called fuzzy measure if

1. $g(\emptyset) = 0$
2. $A, B \in \mathcal{A}$ with $A \subseteq B$ implies $g(A) \leq g(B)$.

We will assume here $g(X) = 1$ as usual, although this is not necessary in general.

We call (X, \mathcal{A}, g) a fuzzy measure space if g is a fuzzy measure on a measurable space (X, \mathcal{A}).

Note that the usual additivity axiom for probability measures

$$g(A \cup B) = g(A) + g(B), \quad A \cap B = \emptyset$$

has been replaced by a weaker one: monotonicity. For this reason, the definition of a fuzzy measure requires in general $2n$ coefficients, namely the measure of the $2n$ subsets of X. Fuzzy measures include as particular cases probability measures, possibility and necessity measures, belief and plausibility functions, etc.

A convenient way of representing fuzzy measures in the finite case is to use a lattice representation. All the $2n$ coefficients defining a fuzzy measure can be arranged in a lattice with the usual ordering on real numbers, which is in fact the same as the Boolean lattice of subsets of X, ordered with inclusion.

A real-valued function $h : X \rightarrow [0, 1]$ is \mathcal{A} measurable with respect to \mathcal{A} and \mathcal{B} (measurable, for short, if there is no confusion likely) if

$$h^{-1}(B) = \{ x | h(x) \in B \} \in \mathcal{A}$$

for any $B \in \mathcal{B}$ (9)

where \mathcal{B} is the σ-algebra of Borel subsets of $[0, 1]$.

We turn now to fuzzy integrals, that is, integrals of a real function with respect to a fuzzy measure, by analogy with Lebesgue integral which is defined with respect to an ordinary (i.e. additive) measure. Sugeno has proposed the following definition, restricted to functions on $[0, 1]$:

$$L^0(X) = \{ h : X \rightarrow [0, 1] | h \text{ is measurable with respect to } \mathcal{A} \text{ and } \mathcal{B} \}$$

For $h \in L^0(X)$ the fuzzy integral of h on A with respect to a fuzzy measure g defined by

$$\int_A h d g = \sup_{\alpha \in [0,1]} \left(\alpha \wedge \sup_A g(A \cap H_A) \right)$$

When $A=X$, the fuzzy integral is denoted by $\int h d g$.

We present the algorithm for evaluation using the fuzzy integral which is explained above.

step 1. an object be given to evaluate, a factor space of the object $X = x_1, x_2, \ldots, x_n$,

In this paper, let $n=3$, x_1 is homogram, x_2 is color, and x_3 is energy.

step 2. given an importance measure as follows: for each subset A of the factor space X, a real number $0 \leq g(X) \leq 1$ be given as a degree of importance of A, such a real number should be the maximum possible score that the object can gain relying only on the quality factors in A.

step 3. for each individual quality factor
we enumerate evaluated scores in the order \(h(x_1), h(x_2), \ldots, h(x_n) \) as following:

For \(x_i \in X, i = 1, 2, \ldots, n \), let

\[
h(x_1) \leq h(x_2) \leq \cdots \leq h(x_n)
\]

then we can consider the set

\[
H_i = \{ x_k | k = i, i + 1, i + 2, \ldots, n \}
\]

Step 4. We compute \(h(x_i) \wedge g(H_i) \) for each \(i \).

Step 5. We can take the maximum value of all computed values in step 4 that is the fuzzy integral \(\int h \, dg \) of the scores \(h(x_i) \) with respect to the importance measure \(g \) to obtain a synthetic evaluation of the quality of the given object.

IV. Simulation results

[Fig. 1] shows block diagram of the proposed method. Above all, one input image is normalized to \(M \times N \) size; the normalized image is transformed into HSV color space for extracting color feature, then the image is divided into 16 color regions, and the representative color of each region is calculated: color histogram is obtained by the above result. Color histogram is expressed in the form of vector, and stored in image feature vector database.

Also, color image is transformed into black and white image for calculating homogram and energy.

Black and white image is decomposed into 1-level by wavelet transformation; then feature vector fit for each band is extracted. First of all, LL band extracts 128 homogram vectors using spatial correlation between wavelet coefficients in the form closely resembling an original image; The other high-frequency band LH, HL, HH, etc. extract 3 feature vectors by energy value, and store them in image feature vector database.

This study has used 1,000 natural images[10] such as buses, horses, flowers, characters with African scenes for background, European townscape, mountains, the sea, the seaside, etc. for evaluating the performance of content-based image retrieval system taking advantage of the feature extraction techniques and similarity measurement techniques proposed here.

Also, it used a system absorbing both edge histogram method expressing high-frequency component and the existing Swain’s histogram intersection method for evaluating the objective performance of CBIR system using the proposed feature extraction techniques. The existing system experimented with color histogram weight and edge histogram weight respectively 0.6 and 0.4, while the method proposed here has taken advantage of query transaction techniques by user definition, and experimented with color, homogram, and energy weight each as 0.4, 0.4, and 0.2.

This paper compared the technique of extracting color-feature and the performance of retrieving similarity proposed here with those of Swain’s histogram intersection method and Park’s visual
feature method, and more.

Table 1. Comparison of the retrieval results

<table>
<thead>
<tr>
<th>Images</th>
<th>Color histogram Precision</th>
<th>Color histogram Recall</th>
<th>Park's method Precision</th>
<th>Park's method Recall</th>
<th>Proposed method Precision</th>
<th>Proposed method Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus</td>
<td>0.5</td>
<td>0.25</td>
<td>0.9</td>
<td>0.45</td>
<td>0.92</td>
<td>0.47</td>
</tr>
<tr>
<td>Horse</td>
<td>0.78</td>
<td>0.38</td>
<td>0.89</td>
<td>0.4</td>
<td>0.91</td>
<td>0.43</td>
</tr>
<tr>
<td>Flower</td>
<td>0.87</td>
<td>0.42</td>
<td>0.91</td>
<td>0.47</td>
<td>0.96</td>
<td>0.48</td>
</tr>
</tbody>
</table>

[Table 1] shows the result of having retrieved, of 1,000 experiment images, ones similar to 10 query images voluntarily selected from bus-kind, and horse-kind, flower-kind ones. It has been proved that the proposed method has better recall and precision than the existing.

![Simulation result(bus)](image)

Also, when [Fig. 2] has received bus image as query image for subjective estimation, (a), (b) and (c) respectively show the result of retrieving the color histogram method, Park’s method and proposed method. As a result of retrieval, images have been expressed as index according to their similarity.

That is, the lower the index of an image is, the more similar it is to query image. The color histogram method retrieved 5 images, like #1, #4, #5, #6, #8, etc. similar to query image (n=1), of the 10 retrieval images. And Park’s method retrieved 9 similar images. On the other hand, the proposed method has showed better visual result than Park’s method as it retrieved 9 similar images.

V. Conclusion

The existing CBIR has used color, texture, and shape etc. Most of all used each features, independently. But the proposed method is used all of the 3 visual features(color, homogram, energy). And it is named as the similarity retrieval method using fuzzy integral, which can be represented in a linear combination of the 3 visual features.

The study experimented 1,000 color images by proposed method here: as a result, the new methods have proved to be much more precise in both
objective performance evaluation and subjective performance evaluation method than the existing ones.

Reference

송 영 준(Young-Jun Song) 중신회원

• 1994년 2월 : 충북대학교 정보통신공학부
 • 1996년 8월 : 충북대학교 정보통신공학부
 • 2004년 8월 : 충북대학교 정보통신공학부
• 2005년 9월 ~ 현재 : 충북대학교 전기전자컴퓨터공학부
 부 박사 후 연구원

<관심분야> : 영상인식, 영상처리, 엽글인식

김 동 우(Dong-Woo Kim) 정회원

• 1997년 2월 : 충북대학교 정보통신공학부
 • 2002년 2월 : 충북대학교 정보통신공학부
 • 2006년 2월 : 충북대학교 정보통신공학부
• 2006년 3월 ~ 현재 : 충주대학교 시간강사

<관심분야> : 내용기반검색, 멀티미디어 정보처리
김 남 (Nam Kim) 정회원

- 1981년 : 연세대학교 전자공학과 (공학사)
- 1983년 : 연세대학교 전자공학과 (공학석사)
- 1988년 : 연세대학교 전자공학과 (공학박사)
- 2001년 ~ 2002년 : 미국 California Technology Institute 방문교수
- 1989년 ~ 현재 : 충북대학교 전기전자컴퓨터공학부 교수
 <관심분야> : 디지털 이동통신, 이동통신, 무선 시스템, 전자파해석, EMI/EMC, Diffractive diffractive optics, and optical memory system

김 미 혜 (Mi-Hye Kim) 종신회원

- 1992년 2월 : 충북대학교 수학과 (이학사)
- 1994년 2월 : 충북대학교 수학과 (이학석사)
- 2001년 2월 : 충북대학교 수학과 (이학박사)
- 2001년 4월 ~ 2004년 8월 : 충북대학교 전기전자컴퓨터공학부 초빙교수
- 2004년 9월 ~ 현재 : 충북대학교 전기전자컴퓨터공학부 조교수
 <관심분야> : 퍼지이론, 정정보이론, 금융수학