Plant Growth-Promoting Capabilities of Diazotrophs from Wild Gramineous Crops

야생 벼과식물 유래 질소고정세균의 식물생장촉진 관련 특성

  • Lee Su-Jin (Department of Microbiology, Kyung-pook National University) ;
  • Lee Sang-Eun (Department of Microbiology, Kyung-pook National University) ;
  • Seul Keyung-Jo (Department of Microbiology, Kyung-pook National University) ;
  • Park Seung-Hwan (Genome Research Center, KRIBB) ;
  • Ghim Sa-Youl (Department of Microbiology, Kyung-pook National University)
  • 이수진 (경북대학교 미생물학과) ;
  • 이상은 (경북대학교 미생물학과) ;
  • 설경조 (경북대학교 미생물학과) ;
  • 박승환 (한국생명공학연구원 유전체연구센터) ;
  • 김사열 (경북대학교 미생물학과)
  • Published : 2006.03.01

Abstract

Since there could be more and rather various diazotrophs in rhizosphere of wild crops than those in rhizosphere of cultivars, some wild gramineous crops grown in Korea were collected for isolating nitrogen-fixing bacteria. Six diazotrophs were purified from their roots using nitrogen-free media. The isolated bacteria were partially identified as 4 genera by 16S rDNA sequence analysis: Stenotrophomonas sp., Bosea sp., Klebsiella sp., and Azorhizobium sp. By PCR amplification and sequence analysis, DNA fragments extracted from all isolates turned out to have an individual nifH homologous gene. Five isolates (KNUC163, KNUC165, KNUC169, KNUC170, and KNUC171) showed auxin activity and four isolates (KNUC163, KNUC166, KNUC170, and KNUC171) produced siderophores. Especially,3 strains of S. maltophilia showed both auxin and siderophore activities. In conclusion, the isolated nitrogen-fixing bacteria might have capabilities for plant growth promotion.

Keywords

Nitrogen-fixing bacteria;nifH;plant growth-promoting rhizobacteria (PGPR);auxin;siderophores

References

  1. Bockman, O. C. 1997. Fertilizers and biological nitrogen fixation as sources of plant nutrients: perspectives for future agriculture. Plant Soil 194: 11-14 https://doi.org/10.1023/A:1004212306598
  2. Das, S. K., A. K. Mishra, B. J. Tindall, F. A. Rainey, and E. Stackebrandt. 1996. Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int. J. Syst. BaCteriol. 46: 981-987 https://doi.org/10.1099/00207713-46-4-981
  3. Khalid, A., M. Arshad, and Z. A. Zahir. 2004. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96: 473-480 https://doi.org/10.1046/j.1365-2672.2003.02161.x
  4. Kirankumar, S. M. and C. M. Ryu. 2004. Nonhost resistance: how much do we know? Trends Plant Sci. 9: 97-104 https://doi.org/10.1016/j.tplants.2003.12.005
  5. Persello-cartieaux, F., L. Nussaume, and C. Robaglia. 2003. Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ. 26: 189-199 https://doi.org/10.1046/j.1365-3040.2003.00956.x
  6. Ryu, C. M., M. A. Farag, P. W. Pare, and J. W. Kloepper. 2004. Invisible signals from the underground: Bacterial volatiles elicit plant growth promotion and induce systemic resistance. Plant Pathol. J. 21: 7-12 https://doi.org/10.5423/PPJ.2005.21.1.007
  7. Park, M., C. Kim, J. Yang, H. Lee, W. Shin, S, Kim, and T. Sa. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res. 160: 127-133 https://doi.org/10.1016/j.micres.2004.10.003
  8. Sung, H. S., Y Lim, S. E. Lee, N. W. Yang, and J. H. Rhee. 2001. CAS agar diffusion assay for the measurement of siderophores in biological fluids. J. Microbiol. Methods 44: 89-95 https://doi.org/10.1016/S0167-7012(00)00229-3
  9. Choi, E. H., S. E. Lee, K. S. Yoon, D. K. Kwon, J. K. Sohn, S. H. Park, M. S. Han, and S. Y Ghim. 2003. Isolation of nitrogen-fixing bacteria from gramineous crops and measurement of nitrogenase activity. Kor. J. Microbiol. Biotechnol. 31: 18-24
  10. Song, S. D., S. J. Kim, and Y S. Chu. 1990. Properties and activities of nitrogenase system of Azospirillum amazonense Kp1. Kor. J. Microbiol. 28: 151-157
  11. Valdes, M., N.-O. Perez, P. E. Santos, J. Caballero-Mellado, J. J. Pena-Cabriales, P. Normand, and A. M. Hirsch. 2005. Non-frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen. Appl. Envion. Microbiol. 71: 460-466 https://doi.org/10.1128/AEM.71.1.460-466.2005
  12. Gordon, S. A. and R. P. Weber. 1951. Colorimetric estimation of indole acetic acid. Plant Physiol. 26: 192-195 https://doi.org/10.1104/pp.26.1.192
  13. Shaharoona, B., M. Arshad, and Z. A. Zahir. 2006. Effect of plant growth promoting rhizobacteria containing ACCdeaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiate L.). Lett. Appl. Microbiol. 42: 155-159 https://doi.org/10.1111/j.1472-765X.2005.01827.x
  14. Bernhard, S. and J. B. Neilands. 1986. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56 https://doi.org/10.1016/0003-2697(87)90612-9
  15. Xie, H., J. J. Pasternak, and B. R. Glick. 1996. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr. Microbiol. 32: 67-71 https://doi.org/10.1007/s002849900012
  16. Lucy, M., E. Reed, and B. R. Glick. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86: 1-25 https://doi.org/10.1023/B:ANTO.0000024903.10757.6e
  17. Poly, F., L. Jocteur-Monrozier, and R. Bally. 2001. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res. Microbiol. 152: 95-103 https://doi.org/10.1016/S0923-2508(00)01172-4
  18. John, F. M., M. S. Reddy, C. M. Ryu, J. W. Kloepper, and R. Li. 2003. Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathology 93: 1301-1307 https://doi.org/10.1094/PHYTO.2003.93.10.1301
  19. Patriarca, E. J., R. Tate, and M. Iaccarino. 2002. Key role of bacterial $NH_{4}^{+}$ metabolism in rhizobium-phmt symbiosis. MMBR 66: 203-222 https://doi.org/10.1128/MMBR.66.2.203-222.2002
  20. Glick, B. R., D. M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growthpromoting bacteria. J. Theor. Biol. 190: 63-68 https://doi.org/10.1006/jtbi.1997.0532
  21. La Scola, B., M-N. Mallet, P. A. D. Grimont, and D. Raoult. 2003. Bosea eneae sp. nov., Bosea massiliensis sp. novo and Bosea vestrisii sp. nov., isolated from hospital water supplies, and emendation of the genus Bosea (Das et al. 1996). Int. J. Syst. Evol. Microbiol. 53: 15-20 https://doi.org/10.1099/ijs.0.02127-0
  22. Ramamoorthy, V., R. Viswanathan, T. Raguchander, V. Prakasam, and R. Samiyappan. 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and disease. Crop Proto 20: 1-11 https://doi.org/10.1016/S0261-2194(00)00056-9
  23. Stoltzfus, J. R., R. So, P. P. Malarvithi, J. K. Ladha, and F. J. de Bruijn. 1997. Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil 194: 25-36 https://doi.org/10.1023/A:1004298921641