Characterization of Pediococcus pentosaceus Isolated from Porcine Intestine

돼지 장내로부터 분리된 항생제 저항성 Pediococcus pentosaceus의 특성

  • Lee Mi-Sung (School of Food Science & Biotechnology, Bioresouce and Application Research Center, Woosong University) ;
  • Yoon Ki-Hong (School of Food Science & Biotechnology, Bioresouce and Application Research Center, Woosong University)
  • 이미성 (우송대학교 식품영양.식품과학부, 생물소재 응용연구센터) ;
  • 윤기홍 (우송대학교 식품영양.식품과학부, 생물소재 응용연구센터)
  • Published : 2006.03.01


A lactic acid bacterial strain resistant to several antibiotics such as oxytetracycline, tylosin, neomycin and sulfathiazole, which have been often used as a therapeutic agent in livestock, was isolated from the porcine gastrointestinal tract. The isolate YB-55 was identified as belonging to the genus Pediococcus with the highest similarity to P. pentosaceus on the basis of its 16S rRNA sequence and biochemical properties. The isolated strain showed viability of over 85% at pH 3.0 and was resistant to bile salt. The strain produced lactic acid of 12.3 g/L by jar fermentation and maintained its viability in the presence of antibiotics at dosage related therapeutic effect, suggesting P. pentosaceus YB-55 may of ffr potential as a probiotics for livestock.


Pediococcus pentosaceus;identification;antibiotic resistance;lactic acid bacteria


  1. Conway, P. L., S. L. Gorbach, and B. R. Goldin. 1987. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70: 1-12
  2. Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66: 365-378
  3. Gilliland, S. E., T. E. Staley, and L. J. Bush. 1984. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J. Dairy Sci. 67: 3045-3051
  4. Sautou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  5. Lee, J. K., W. T. Kim, J. H. Lee, J. H. Yu, and W. C. Shin. 1991. Isolation and identification of lactic acid bacteria for preparation of probiotics. Kor. J. Appl. Microbiol. Biotechnol. 19: 429-432
  6. Felsenstein, J. 2002. PHYLIP (phylogeny inference package), version 3.6a, Seattle: Department of Genetics, University of Washington, Seattle, WA, USA
  7. Kurman, J. A. 1983. The development and significance of new cultures with bifidobacteria as an example. North. Eur. Dairy J. 3: 65-74
  8. Park, J. G, S. Y. Yun, S. J. Oh, J. G. Shin, and Y. J. Baek. 2003. Probiotic characteristics of Lactobacillus acidophilus KY1909 isolated from Korean breast-fed infant. Korean J. Food Sci. Technol. 35: 1244-1247
  9. Kweun, M. A., H. S. Kim, M. -So Lee, J. H. Choi, and K.-H. Yoon. 2003. Mannanase production by a soybean isolate, Bacillus subtilis WL-7. Kor. J. Microbiol. Biotechnol. 31: 277-283
  10. Berrada, N., J. F. Lemeland, G. Laroche, P. Thouvenot, and M. Piaia. 1991. Bifidobacterium from fermented milks: Survival during gastric transit. J. Dairy Sci. 74: 409-413
  11. Casey, P. G, G. D. Casey, G. E. Gardiner, M. Tangney, C. Stanton, R. P. Ross, C. Hill, and G. F. Fitzgerald. 2004. Isolation and characterization of anti-Salmonella lactic acid bacteria from the porcine gastrointestinal tract. Lett. Appl. Microbial. 39: 431-438
  12. Chang, Y. H., J. K. Kim, H. J. Kim, W. Y. Kim, Y. B. Kim, and Y. H. Park. 2000. Probiotic effects of Lactobacillus reuteri BSA-131 on piglets. Kor. J. Appl. Microbial. Biotechnol. 28: 8-13
  13. Pollman, D. S., D. M. Danielson, and E. R. Poe, Jr. 1980. Effect of microbial feed additives on performance of starter and growing-finishing pigs. J. Anim. Sci. 51: 577-581
  14. Jukes, T. H. and C. R. Cantor. ]969. Evolution of protein molecules. pp. 21-132. In H. N. Munro. (ed.), Mammalian Protein Metabolism, Academic Press, New York