Imitation of Phosphoenolpyruvate to Oxaloacetate Pathway Regulation of Rumen Bacteria in Enteric Escherichia coli and Effect on C4 Metabolism

반추위 미생물이 가진 Phosphoenolpyruvate에서 Oxaloacetate 경로 조절기작의 대장균에서의 모사와 C4대사의 영향

  • Kwon Yeong-Deok (Department of Life Science, The Catholic University of Korea) ;
  • Kwon Oh-Hee (Department of Biotechnology, The Catholic University of Korea) ;
  • Lee Heung-Shick (Department of Biotechnology, Korea University) ;
  • Kim Pil (Department of Biotechnology, The Catholic University of Korea)
  • 권영덕 (가톨릭대학교 생명과학과) ;
  • 권오희 (가톨릭대학교 생명공학과) ;
  • 이흥식 (고려대학교 생명정보공학과) ;
  • 김필 (가톨릭대학교 생명공학과)
  • Published : 2006.03.01

Abstract

One of the fermentative metabolism of enteric Escherichia coli was imitated after rumen bacteria, which have high C4 metabolism. E. coli expresses phosphenolpyruvate carboxylase (PPC) for the pathway between phosphoenolpyruvate (PEP) and oxaloacetate (OAA) during glycolytic condition while expresses phosphoenolpyruvate carboxykinase (PCK) during gluconeogenic condition. In contrast to enteric E. coli, rumen bacteria express the PEP-OAA pathway only by PCK. To verify the effect of the regulation imitation on the C4 metabolism of E. coli, PPC-deficient E. coli strain with PCK expression in glycolytic condition was constructed. The PEP-OAA regulation modified E. coli strain increased 2.5-folds higher C4 metabolite than the wild type strain. The potential use of C4 metabolism by regulation control is discussed.

Keywords

Phosphoenolpyruvate (PEP);oxaloacetate (OAA);phosphoenolpyruvate carboxykinase (PCK);phosphoenolpyruvate carboxylase (PPC);Escherichia coli physiology;regulation

References

  1. Aamikunnas, J., N. Von Weymam, K. Ronnholm, M. Leisola, and A. PaIva. 2003. Metabolic engineering of Lactobacillus fermentum for production of mannitol and pure L-Iactic acid or pyruvate. Biotechnol. Bioeng. 82: 653-663 https://doi.org/10.1002/bit.10615
  2. Hong, S. H., J. S. Kim, S. Y. Lee, Y. H. In, S. S. Choi, J. K. Rih, C. H. Kim, H. Jeong, C. G. Hur, and J. J. Kim. 2004. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat. Biotechnol. 22: 1275-1281 https://doi.org/10.1038/nbt1010
  3. Liao, J. C., Y. P. Chao, and R. Patnaik. 1994. Alteration of the biochemical valves in the central metabolism of Escherichia coli. Ann. N. Y Acad. Sci. 745: 21-34 https://doi.org/10.1111/j.1749-6632.1994.tb44361.x
  4. Palmarola-Adrados, B., P. Choteborska, M. Galbe, and G. Zacchi. 2005. Ethanol production from non-starch carbohydrates of wheat bran. Bioresour. Technol. 96: 843-850 https://doi.org/10.1016/j.biortech.2004.07.004
  5. Vemuri, G. N., M. A. Eiteman, and E. Altman. 2002. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J. Ind. Microbiol. Biotechnol. 28: 325-332 https://doi.org/10.1038/sj.jim.7000250
  6. Zelie, B., D. Vasic-Racki, C. Wandrey, and R. Takors. 2004. Modeling of the pyruvate production with Escherichia coli in a fed-batch bioreactor Bioprocess Biosyst. Eng. 26: 249-258 https://doi.org/10.1007/s00449-004-0358-0
  7. Georgi, T., D. Rittmann, and V. F. Wendisch. 2005. Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab. Eng. 7: 291-301 https://doi.org/10.1016/j.ymben.2005.05.001
  8. van der Wen, M. J. and J. G. Zeikus. 1996. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl. Environ. Microbiol. 62: 3560-3566
  9. Skory, C. D. 2004. Lactic acid production by Rhizopus oryzae transformants with modified lactate dehydrogenase activity. Appl. Microbiol. Biotechnol. 64: 237-242 https://doi.org/10.1007/s00253-003-1480-7
  10. Gokam, R. R., M. A. Eiteman, and E. Altman. 2000. Metabolic analysis of Escherichia coli in the presence and absence of the carboxylating enzymes phosphoenolpyruvate carboxylase and pyruvate carboxylase. Appl. Environ. Microbiol. 66: 1844-1850 https://doi.org/10.1128/AEM.66.5.1844-1850.2000
  11. Kim, P., M. Laivenieks, C. Vieille, and J. G. Zeikus. 2004. Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli. Appl. Environ. Microbiol. 70: 1238-1241 https://doi.org/10.1128/AEM.70.2.1238-1241.2004
  12. Sandri, R. M. and H. Berger. 1980. Bacteriophage PImediated generalized transduction in Escherichia coli: structure of abortively transduced DNA. Virology 106: 30-40 https://doi.org/10.1016/0042-6822(80)90218-4
  13. Chao, Y. P. and J. C. Liao. 1994. Metabolic responses to substrate futile cycling in Escherichia coli. J. Biol. Chem. 269: 5122-5126
  14. Lee, P. C., W. GLee, S. Y. Lee, and H. N. Chang. 2001. Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol. Bioeng. 72: 41-48 https://doi.org/10.1002/1097-0290(20010105)72:1<41::AID-BIT6>3.0.CO;2-N
  15. Kimura, E. 2003. Metabolic engineering of glutamate production. Adv. Biochem. Eng. Biotechnol. 79: 37-57
  16. Guettler, M. V., D. Rumler, and M. K. Jain. 1999. Actinobacillus succinogenes sp. nov., a novel succinic-acidproducing strain from the bovine rumen. Int. J. Syst. Bacteriol. 49 Pt 1: 207-216 https://doi.org/10.1099/00207713-49-1-207
  17. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning 3rd Ed. Cold Spring Harbor Laboratory Press. New York
  18. Bai, F. W., L. J. Chen, Z. Zhang, W. A. Anderson, and M. Moo-Young. 2004. Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J. Biotechnol. 110: 287-293 https://doi.org/10.1016/j.jbiotec.2004.01.017
  19. Lee, W. G, J. S. Lee, C. S. Shin, S. C. Park, H. N. Chang, and Y. K. Chang. 1999. Ethanol production using concentrated oak wood hydrolysates and methods to detoxify. Appl. Biochem. Biotechnol. 77-79: 547-559
  20. Lin, B., G. N. Bennett, and K. Y. San. 2005. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab. Eng. 7: 116-127 https://doi.org/10.1016/j.ymben.2004.10.003
  21. Yang, C., Q. Hua, T. Baba, H. Mori, and K. Shimizu. 2003. Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnol. Bioeng. 84: 129-144 https://doi.org/10.1002/bit.10692
  22. Bonanni, E., L. Pasquali, M. L. Manca, M. Maestri, C. Prontera, M. Fabbrini, S. Berrettini, G. Zucchelli, G. Siciliano, and L. Murri. 2004. Lactate production and catecholamine profile during aerobic exercise in normotensive OSAS patients. Sleep Med. 5: 137-145 https://doi.org/10.1016/j.sleep.2003.08.009