Characterization of Phytase from Bacillus coagulans IDCC 1201

Bacillus coagulans IDCC 1201이 생산하는 Phytase의 특성

  • Lee Seung-Hun (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.) ;
  • Kwon Hyuk-Sang (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.) ;
  • Koo Kyo-Tan (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.) ;
  • Kang Byung-Hwa (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.) ;
  • Kim Tae-Yong (ILDONG Research Laboratories, ILDONG Pharmaceutical Co., Ltd.)
  • 이승훈 (일동제약(주) 중앙연구소) ;
  • 권혁상 (일동제약(주) 중앙연구소) ;
  • 구교탄 (일동제약(주) 중앙연구소) ;
  • 강병화 (일동제약(주) 중앙연구소) ;
  • 김태용 (일동제약(주) 중앙연구소)
  • Published : 2006.03.01

Abstract

A native extracellular acid phosphatase, phytase (EC 3.1.3.8), from Bacillus coagulans IDCC 1201 (commercially known as Lactobacillus sporogenes) used as probiotics, was characterized. Though some strains of B. coagulans have been evaluated with regard to several health-promoting effects, it has not been reported to produce phytase. Partially purified phytase front the strain IDCC 1201 had a pH optimum of 4.0 and a temperature optimum of $50^{\circ}C$, respectively. The requirement for divalent cations was studied and cobalt ion remarkably increased the enzyme activity. The removal of metal ions from the enzyme by EDTA decreased activity below 50%. The enzyme activity depleted restored when the assay was performed in the presence of $Co^{2+}$. Also, $Co^{2+}$ is the most active stimulator and has unique activation effect at high temperature. The phytase was specific for sodium phytate and p-nitrophenylphosphate, which is different from other known Bacilli phytases. The putative amino acid sequences of the phytase from B. coagulans IDCC 1201 were very similar to that of the phytase from B. subtilis strain 168. Based on these data, we concluded that the phytase from B. coagulans IDCC 1201 is a $Co^{2+}$-dependent acid phosphatase. Therefore, the strain B. coagulans IDCC 1201 is thought to be a valuable addititive for livestocks as well as a beneficial probiotics for human.

Keywords

Acid phytase;phytic acid;$Co^{2+}$-dependent metalloenzyme;thermostability;Bacillus coagulans

References

  1. Choi, J. M., D. S. Kim, M. S. Yang, H. R. Kim, and J. H. Kim. 2001. Expression of the Aspergillus niger var. awamori phytase gene in Pichia pastoris, and comparison of biological properties. J. Microbiol. Biotechnol. 11: 1066-1070
  2. Mohan, J. C., R. Arora, and M. khalilullah. 1990. Short term hypolipidemic effects of oral Lactobacillus sporogenes therapy in patients with primary dyslipidemias. Indian Heart J. 42: 361-364
  3. Panchal, T. and R. J. Wodzinski. 1998. Comparison of glycosylation patterns of phytase from Aspergillus niger (A. jicuum) NRRL3135 and recombinant phytase. Prep. Biochem. Biotechnol. 28: 201-217 https://doi.org/10.1080/10826069808010136
  4. Pasamontes, L., M. Haiker, M. Wyss, M. Tessier, and A. P. G. M. VanLoon. 1997. Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 63: 1696-1700
  5. Choi, W. C., B. C. Oh, H. K. Kim, and E. S. Lee. 2002. Medium optimization for phytrase production by recombinant Escherichia coli using statical experimental design. J. Microbiol. Biotechnol. 12: 490-496
  6. Wodzinski, R. J. and A.H. Ullah. 1996. Phytase. Adv. Appl. Microbiol. 42: 263-302 https://doi.org/10.1016/S0065-2164(08)70375-7
  7. Angelis, M., G. Gallo, M. Rosaria, P. McSqweeney, M. Faccia, M. Giovine, and M. Gobbetti. 2003. Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int. J. Food Microbiol. 87: 259-270 https://doi.org/10.1016/S0168-1605(03)00072-2
  8. Dvorakova, J., O. Volfova, and J. Kopecky. 1997. Characterization of phytase produced by Aspergillus niger. Folia Microbiol. 42: 349-352 https://doi.org/10.1007/BF02816948
  9. Kim, K. H., H. S. Yang, Y. J. Choi, and H. C. Yang. 1982. Studies on the conditions of extracellular phytase production by Aspergillus niger. Kor. J. Microbiol. Biotechnol. 10: 133-144
  10. Choi, W. C., B. C. Oh, H. K. Kim, S. C. Kang, and T. K. Oh. 2002. Characteriztion and cloning of a phytase from Escherichia coli WC7. Kor. J. Microbiol. Biotechnol. 30: 17
  11. Kim, D. H., B. C. Oh, W. C. Choi, J. K. Lee, and T. K. Oh. 1999. Enzymatic evaluation of Bacillus amyloliquefaciens phytase as a feed additive. Biotechnol. Lett. 21: 925-927 https://doi.org/10.1023/A:1005602717835
  12. Tye, A. J., F. K. Y. Siu, T. Y. C. Leung, and B. L. Lim. 2002. Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Appl. Microbiol. Biotechnol. 59: 190-197 https://doi.org/10.1007/s00253-002-1033-5
  13. Seok. E. K., T. H. Kim, J. C. Lee, P. K. Chung, and K. K. Lee. 1987. Lowering of serum cholesterol by Lactobacillus sporogenes. Yakhak Hoeji. 31: 302-307
  14. Nagashima, T., T. Tange, and H. Anazawa. 1999. Dephosphorylation of phytate by using the Aspergillus niger phytase with a high affinity for phytate. Appl. Environ. Microbiol. 65: 4682-4684
  15. Choi, Y. M., D. O. Noh, S. H. Cho, H. K. Lee, H. J. Suh, and S. H. Chung. 1999. Isolation of a phytase-producing Bacillus sp. KHU-10 and its phytase production. J. Microbiol. Biotechnol. 9: 223-226
  16. Bae, H. D., L. J. Yanke, K. J. Cheng, and L. B. Selinger. 1999. A novel staining method for detecting phytase activity. J. Microbiol. Methods. 39: 17-22 https://doi.org/10.1016/S0167-7012(99)00096-2
  17. Nair, V.C., J. Laflamme, and Z. Uvnjak. 1991. Production of phytase by Aspergillus jicuum and reduction of phytic acid content in canolameal. J. Sci. Food Agric. 54: 355-365 https://doi.org/10.1002/jsfa.2740540306
  18. Kim, Y. H., S. Y. Yang, D. Y. Kim, C. W. Kim, W. H. Jung, M. N. Gwon, and M. D. Song. 2001. Isolation of Enterobacter cloacae producing phytase and medium optimization of its production. Kor. J. Microbiol. Biotechnol. 29: 78-83
  19. Kerovuo, J., I. Lappalainen, and T. Reinikainen. 2000. The metal dependence of Bacillus subtilis phytase. Biochem. Biophys. Res. Commun. 268: 365-369 https://doi.org/10.1006/bbrc.2000.2131
  20. Kim. H. S., S. S. Choi, E. C. Choi, B. K. Kim, J. C. Lee, and T. H. Kim. 1989. Development of Lactobacillus sporogenes resistant to rifampicin, an antituberculosis agent. Kor. J. Microbiol. 27: 155-161
  21. Kim, Y. O., J. K. Lee, B. C. Oh, and T. K. Oh. 1999. Highlevel expression of a recombinant thermostable phytase in Bacillus subtilis. Biosci. Biotechnol. Biochem. 63: 2205-2207 https://doi.org/10.1271/bbb.63.2205
  22. Papagianni, M., S. E. Nokes, and K. Filer. 2000. Production of phytase by Aspergillus niger in submerged and solid-state fermentation. Process Biochem. 35: 397-402 https://doi.org/10.1016/S0032-9592(99)00088-6
  23. Shimizu, M. 1992. Purification and characterization of phytase from Bacillus subtilis (Natto) n-77. Biosci. Biotechnol. Biochem. 56: 1266-1269 https://doi.org/10.1271/bbb.56.1266
  24. Tanner, J. T. and S. A. Bamett. 1986. Methods of analysis for infant formula: Food and drug administration and infant formula council collaborative study, phase III. J. Assoc. Off. Anal. Chem. 69: 777-785
  25. Gong, N., C. Chen, L. Xie, and H. Chen. 2005. Characterization of a thermostable alkaline phosphatase from a novel species Thermus yunnanensis sp. novo and investigation of its cobalt activation at high temperature. Biochim. Biophys. Acta 1750: 103-111
  26. Kim, Y. O., J. K. Lee, H. K. Kim, J. H. Yu, and T. K. Oh. 1998. Cloning of the thermostable phytase gene(phy) from Bacillus sp. DS 11 and its over-expression in Escherichia coli. FEMS Microbiol. Lett. 162: 185-191 https://doi.org/10.1111/j.1574-6968.1998.tb12997.x