• Published : 2006.03.01


The noise temperature of existing millimeter-wave receivers is already within two or three times quantum noise limit. One of practical ways to increase the observation speed of single dish radio telescope without longer integration time is use of multi-beam focal plane array receiver as demonstrated in several large single dish radio telescopes. In this context the TRAO (Taeduk Radio Astronomy Observatory), which operates a 143n Cassegrain radio telescope, is planning to develop a 4 x 4 beams focal plane array SIS receiver system for 86-115 GHz band. Even though millimeter-wave HEMT LNA-based receivers approach the noise temperature comparable to the SIS receiver at W-band, it is believed that the receiver based on SIS mixer seems to offer a bit more advantages. The critical part of the multi-beam array receiver will be sideband separating SIS mixers. Employing such a type of SIS mixer makes it possible to simplify the quasi-optics of receiver. Otherwise, an SSB filter should be used in front of the mixer or some sophisticated post-processing of observation data is needed. In this paper we will present a preliminary design concept and components needed for the development of a new 3 mm band multi-beam focal plane array receiver.


  1. Asayama, S., Noguchi, T., & Ogawa, H. 2003b, Proc. 14th Int'l. Symp. on Space Terahertz Tech.
  2. Dubrovich, V. K. 1997, A&A, 324, 27
  3. Engargiola, G., Navarrini, A., Plambeck, R. L., & Wadefalk, N. 2004, SPIE, 5498, 556
  4. Erickson, N. R., Goldsmith, P. E, Novak, G., Grosslein, R. M., Viscuso, P. J., Erickson, R. B., & Predmore, C. R. 1992, IEEE Trans. Microwave Theory Tech., 40,1
  5. Erickson, N. R., Grosslein, R. M., Erickson, R. B., & Weinreb, S. 1999, IEEE Trans. Microwave Theory Tech., 47,2212
  6. Goldsmith, P. E, Hsieh, C.-T., Huguenin, G. R., Kapitzky, J., & Moore, E. L. 1993, IEEE Trans. Microwave Theory Tech., 41,1664
  7. Groopi, C, Walker, C, Kulesa, C., Narayanan, G., Jacobs, K., Graf, U, Schider, R., & Kooi, J. 2003, Proc. 14th Int'l. Symp. on Space Terahertz Tech.
  8. Glisten, R., Hauschildt, H., Ediss, G. A., Kasemann, C., Keen, N. J., Mattes, H., Pilz, M., Scherschel, M., Schneider, G., Walker, C. K., Knoepfle, H., & Gundlach, K. H. 1995, in ASP Conference Series, vol.7, Multi-Feed Systems for Radio Telescopes, eds. D. T. Emerson & J. M. Payne (San Francisco: Astronomical Society of the Pacific), p.222
  9. Kerr, A. R., Pan, S.-K., Lauria, E. E, Lichtenberger, A. W., Zhang, J., Pospieszalski, M. W., Horner, N., Ediss, G. A., Effland, J. E., & Groves, R. L. 2004, Proc. 15th Int'l. Symp. on Space Terahertz Tech.
  10. Khaikin, V. 2005, Proceedings of 28th ESA Antenna Workshop on Space Antenna Systems and Technologies, in press
  11. Khaikin, V. B., Chung, M.-H., Radzikhovsky, V. N., Kuzmin, S. E., & Kaplya, S. V. 2005, Proceedings of Cosmion-2004, in press
  12. Khaikin, V. B., Kaplya S. V., Chung, M.- H., Radzikhovsky, V. N., & Kuzmin, S. E. 2005, Cosmology and Gravitation J. 11, 155
  13. Morgan, M., Weinreb, S., Wadefalk, N., & Samoska, L. 2002, IEEE MTT-S Intl. Microwave Symp. Digest, p.1859
  14. Payne, J. M. 1988, Rev. Sci. Instr., 59, 1911
  15. Schuster, K.-E, Boucher, C., Brunswig, W., Carter, M., Chenu, J.- Y., Foullieux, B., Greve, A., John, D., Lazareff, B., Navarro, S., Perrigouard, A., Pollet, 1.-L., Sievers, A., Thurn, c, & Wiesemeyer, H. 2004, A&A, 423, 1171
  16. Claude, S. M. X. 2003, Proc. 14th Int'l. Symp. on Space Terahertz Tech.
  17. Asayama, S., Kimura, K., Iwashita, H., Sato, N., Takahashi, T., Saito, M., Ikenoue, B., Ishizaki, H., & Ukita, N. 2003a, ALMA Memo #481
  18. Serabyn, E. 1997, Int. J. Infrared Millimeter Waves, 18,273
  19. Dubrovich, V. K. 1977, Astron. Letters, 3, 243

Cited by

  1. Compact Efficient Feed-Horn at 30–38 GHz for a Multi-beam Radio Telescope vol.31, pp.7, 2010,