Effects of Dietary Lactobacillus brevis Supplementation on Growth Performance, Dry Matter and Nitrogen Digestibilities, Blood Cell Counts and Fecal Odor Emission Compounds in Growing Pigs

육성돈사료에 Lactobacillus brevis의 첨가가 성산성, 건물과 질소 소화율, 혈구수 및 분 내 악취 발생 물질에 미치는 영향

  • 진영걸 (단국대학교) ;
  • 민병준 (단국대학교) ;
  • 조진호 (단국대학교) ;
  • 김해진 (단국대학교) ;
  • 유종상 (단국대학교) ;
  • 김인호 (단국대학교)
  • Published : 2006.08.31


This study was conducted to investigate the effects of dietary Lactobacillus brevis (3.4×108 CFU/g) supplementation on growth performance, DM and N digestibilities, blood cell counts and fecal odor emission compounds in growing pigs. Ninety six crossbred [(Landrace×Yorkshire)×Duroc] pigs with an initial BW of 24.60±1.28kg were used for 42-d feeding trial according to a completely randomized design. Three corn- soybean meal based dietary treatments included: 1) CON (basal diet); 2) LB1 (basal diet + Lactobacillus brevis 0.2%) and 3) LB2 (basal diet+Lactobacillus brevis 0.4%). There were three dietary treatments with eight replicate pens per treatment and four pigs per pen. Through the entire experimental period, ADG, ADFI and gain/feed had no significant differences among treatments(P>0.05). Nitrogen digestibility was increased in LB1 and LB2 treatments compared to CON treatment (linear effect, P<0.05), however, DM digestibility had no significant difference among all the treatments (P>0.05). The WBC, RBC and lymphocyte concentrations in whole blood were not affected by treatments (P>0.05). Fecal NH3N and H2S concentrations were significant decreased in LB2 treatment compared to CON treatment (linear effect, P<0.05). Fecal VFA (acetic acid and propionic acid) concentration was also reduced in LB2 treatment compared to CON treatment (linear effect, P<0.05). In conclusion, Lactobacillus brevis (3.4×108 CFU/g) supplementation at the level of 0.4% can improve nitrogen digestibility and decrease the concentrations of fecal odor emission compounds in growing pigs.


Lactobacillus brevis


  1. Aattouri, N., Bouras, M., Tome, D., Marcos, A. and Lemonnier, D. 2002. Oral ingestion of lactic acid bacteria by rats increases lymphocytic proliferation and interferon. production. Br. J. Nutr. 87:367-373
  2. AOAC. 1995. Official method of analysis. 16th Edition. Association of Official Analytical Chemists. Washington. DC
  3. Avery. G. L. Merva. G. E. and Gerrish. J. B. 1975. Hydrogen sulfide production in swine confinement units. Trans. ASAE. 17: 149-151
  4. Baird. D. M. 1977. Probiotics help boost feed efficiency. Feedstuffs. 49:11-12
  5. Bomba. A.. Nemcova, R.. Gancarcikova, S.. Herich. R.. Guba, P. and Mudronova, D. 2002. Improvement of the probiotic effect of micro-organisms by their combination with maltodextrins, fructo-oligosaccharides and polyunsaturated fatty acids. British Journal of Nutrition. 88 (Suppl.) 1: 95-99
  6. Burgstaller. G., Ferstl, R. and Apls, H. 1984. The addition of lactic acid bacteria (Streptococcus faecium SF-68) to a milk replacer for calf feeding. Zuchtungskunde. 56: 156-162
  7. Chaney, A. L. and Marbach, E. P. 1962. Modified regents for determination of urea and ammonia. Clin. Chem. 8: 131
  8. Chen. Y. J., Son, K. S., Min, B. J.. Cho, J. H., Kwon, O. S. and Kim. I. H. 2005. Effects of dietary probiotic on growth performance, nutrients digestibility, blood characteristics and fecal noxious gas content in growing pigs. Asian-Aust. J. Anim. Sci. 18:1464-1468
  9. Chen. Y. J., Min, B. J., Cho, J. H., Kwon, O. S., Son. K. S.. Kim. I. H. and Kim. S. J. 2006. Effects of dietary Enterococcus faecium SF68 on growth performance. nutrients digestibility. blood characteristics and fecal noxious gas content in finishing pigs. Asian-Aust. J. Anim. Sci. 19:406-411
  10. Elsden. S. R.. Hitchcock. M. W. S.. Marshall. R. A. and Phillipson. A. T. 1946. Volatile acid in the digesta of ruminants and other animals. J. Exp. Biol. 22: 191-202
  11. Fuller. R. 1989. Probiotics in man and animals. J. Appl. Bacteriol, 66:365-378
  12. Hale. O. M. and Newton, G. L. 1979. Effects of a nonviable Lactobacillus species fermentation product on performance of pigs. J. Anim. Sci, 48:770
  13. Han. I. K.. Lee, J. H .. Piao. X. S. and Li, D. F. 2001. Feeding and management system to reduce environmental pollution in swine production: A review. Asian-Aust. J. Anim. Sci. 14:432-444
  14. Hays. V. W. 1969. Use of Drugs in Animal Feeds. National Academy of Science. Washington. D. C
  15. Heber. A. J.. Duggirala R. K.. Ni. J. Q.. Spence. M. L.. Haymore. B. L.. Adamchuk, V. I.. Bundy. D. S.. Sutton. A. L.. Kelly. D. T. and Keener. K. M. 1997 Manure treatment to reduce gas emissions from large swine houses. Vinkeloord, The Netherlands. pp: 449-458
  16. Heilig. H. G. H. J.. Zoetendal. F. G .. Vaughan. E. E.. Marteau. P.. Akkermans. A. D. L and de Vos. W. M. 2002. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl. Environ. Microbiol. 68:114-123
  17. Hong. J. W.. Kim. I. H.. Kwon, O. S .. Kim. J. H.. Min. B. J. and Lee. W. B. 2002. Effects of dietary probiotics supplementation on growth performance and fecal gas emission in nursmg and finishing pigs. J. Anim. Sci & Technol. (Kor.) 44:305-314
  18. Imoto. S. and Namioka, S. 1978. VFA production in the pig large intestine. J. Anim. Sci. 47:467-478
  19. Ji. F. and Kim. S. W. 2002. Reducing odor in swine production: Effect of enzymes and probiotics on ammonia production. J. Anim. Sci. Vol. 80 (Suppl. I)
  20. Jasek. S. R.. Kalinowska, R.. Knecht. D. and Pawiak, R. 1992. Effect of Biogen probiotic addition on reproduction results and physiological indices in pigs. Rocz. Nauk. Zootech. 31 :239
  21. Jonsson. E. and Conway, P. 1992. Probiotics for pigs. In: R. Fuller (Ed.) Probiotics: The Scientific Basis. Chapman & Hall. London. pp:260-316
  22. Kadota, H. and Ishida. Y. 1972. Production of volatile sulfur compounds by microorganisms. Ann. Rev. Microbiol. 26:127-138
  23. Kil, D. Y.. Lim, S. J.. Tian, J. Z.. Kim, B. G.. Kim, K. S. and Kim. Y. Y. 2004. Effect of continuous feeding of probiotics on growth performance, nutrient digestibility. blood urea nitrogen and immune responses in pigs. J. Anim. Sci & Technol. (Kor.) 46:39-48
  24. Kornegay. E. T., Wood. C. M.. Ball, G. G. and Risley. C. R. 1990. Use of Lactobacillus acidophilus for growing and finishing pigs. VA Polytech. Inst. State Univ. Anim. Sci. Res. Rep. 9:13
  25. Maxwell. C. Y.. Buchanan. D. S.. Owens. F. N.. Gilliland. S. E.. Luce. W. G. and Vend. R. 1983. Effect of probiotic supplementation on performance, fecal parameters and digestibility In growing finishing swine. Oklahoma Agric. Exp. Sta.. Anim. Sci. Res. Rep. 114:157
  26. NRC. 1998. Nutrient requirement of pigs. 10th Edition. National Research Council. Academy Press. Washington, D. C
  27. Otto. E. R., Yokoyama, M.. Hengernuehle, S.. von Bermuth, R. D., van Kempen, T. and Trottier. N. L. 2003. Ammonia, volatile fatty acids. phenolics, and odor offensiveness in manure from growing pigs fed diets reduced in protein concentration. J. Anim. Sci. 2003. 81:1754-1763
  28. Peterson, R. G. 1985. Design and Analysis of Experiments. Marcel Dekker. New York
  29. Sandine, W. E. 1979. Role of lactobacillus in the intestinal tract. J. Food Protect. 42: 259-262
  30. SAS. 1996. SAS user's guide. Release 6.12 edition. SAS Institute. Inc Cary NC. USA
  31. Shon, K. S., Hong, J. W., Kwon, O. S., Min, B. J., Lee, W. B., Kim, I. H., Park, Y. H. and Lee, I. S. 2005. Effects of Lactobacillus reuteri-based direct-fed microbial supplementation for growing-finishing pigs. Asian-Aust. J. Anim. Sci. 18:370-374
  32. Spriet, S. M.. Decuypere. .J. A. and Henderickx. H. K. 1987. Effect of Bacillus toyoi (Toyocerin) on the gastrointestinal microflora. concentration of some bacterial metabolites. digestibility of the nutrients and the small intestinal mean retention time in pigs. Meded. Fac. Landbouwkd. Rijksuniv. Gent. 52: 1673
  33. Tortuero. F.. Rioperez, J.. Fernandez, E. and Rodriguez. M. L. 1995. Response of piglets to oral administration of lactic acid bacteria. J. Food Protect. 58:1369-1374
  34. Wenk, C. 2000. Recent advances in animal feed additives such as metabolic modifiers, antimicrobial agents, probiotics, enzymes and highly available minerals. Asian-Aust, J. Anim. Sci. 13:86-95
  35. Zahn, J. A., Hatfield, J. L., Do, Y. S., DiSpirito, A. A.. Laird, D. A. and Pfeiffer. R. L. 1997. Characterization of volatile organic emissions and wastes from a swine production facility. J. Environ. Qual. 26: 1687 -1696
  36. Franklin. M. A.. Mathew, A. G.. Vickers. J. R. and Clift. R. A. 2002. Characterization of microbial populations and volatile fatty acid concentrations 111 the jejunum. ileum. and cecum of pigs weaned at 17 vs 24 days of age. J. Anim. Sci, 80:2904-2910
  37. Banwart. W. L. and Bremner. J. M. 1975. Formation of volatile sulfur-compounds by microbial decomposition of sulfur-containing amino acids in soils. Soil. Biol. Biochem. 7:3590-364
  38. Elina, R.. Erja, M.. Maria S.. Merja. R.. Johannes. A. and Airi. P. 2003. Probiotic and milk technological properties of Lactobacillus brevis. Int. J. of Food Microbiol. 83:63-74
  39. Apgar. G. A.. Kornegay. F. T.. Lindemann. M. D. and Wood. C. M. 1993. The effect of feeding various levels of Bifidobacteriurn globosurn A on the performance. gastrointestinal measurements. and immunity of weanling pigs and on the performance and carcass measurements of growing-finishing pigs. J. Anim, Sci. 71:2173-2179
  40. Collins. M. D. and Gibson. G. R. 1999. Probiotics, prebiotics and synbiotics: approaches for modulating the microbial ecology of the gut. Anim. J. Clin. Nutr. 69 (suppl):1052-1057