DOI QR코드

DOI QR Code

Studies on Isolation and Characterization of Anaerobic Bacteria from Gut of Holstein Cows and Korean Male Spotted Deer

꽃사슴과 Holstein 젖소의 장내 혐기성 박테리아의 분리 및 특성

  • 박소현 (한경대학교 낙농과학과) ;
  • 이기영 (한경대학교 생물정보통신전문대학원) ;
  • 안종호 (한경대학교 낙농과학과) ;
  • 장문백 (중앙대학교 동물자원과학과) ;
  • 김창현 (한경대학교 동물생명자원학과)
  • Published : 2006.02.28

Abstract

The purpose of this study was to isolate cellulolytic and hemicellulolytic anaerobic bacteria inhabiting from gut of ruminants and investigate their hydrolytic enzyme activities. Extracellular CMCase activities of H-strains isolated from the rumen of a Holstein dairy cow were higher than those of D- and DC- strains from the rumen and large intestine of Korean spotted deer. Most isolated bacteria utilized more efficiently Dehority's artificial medium containing starch, glucose and cellobiose (DAS) than those in Dehority's artificial medium containing cellulose only (DAC). The results of biochemical reactions and sugar fermentation indicated that the isolated bacteria belong to one of bacterial strains of Peptostreptococcus spp., Bifidobacterium spp., Prevotela ruminicola/buccae, Clostridium beijer/butyricum and Streptococcus intermedis which are not highly cellulolytic. Activities of Avicelase, xylanase, β-D-glucosidase, α-L-arabinofuranosidase and β-xylosidase of the isolated anaerobic bacteria in DAS were higher than those in DAC. In conclusion, the results indicated the higher enzyme activities of the isolated strains cultured in DAS medium were mainly caused by their specific carbohydrate utilization for enzyme production and growth rate. The highly cellulolytic bacteria were not isolated in the present experiment. Thus further research is required to investigate characteristics of gut bacteria from Korean spotted deer.

Keywords

Anaerobic bacteria;Enzyme;Korean spotted deer;Holstein cow

References

  1. Bryant, M. P. and Burkey, L. A. 1953. Cultural methods and some characteristics of some of the more numberous groups of bacteria in the bovine rumen. J. Dairy Sci. 36:205 https://doi.org/10.3168/jds.S0022-0302(53)91482-9
  2. Bryant, M. P., Small, N., Bouman, C. and Robinson, I. M. 1958. Studies on the composition of the ruminal flora and fauna of young calves. J. Dairy Sci., 41:1747 https://doi.org/10.3168/jds.S0022-0302(58)91160-3
  3. Dehority, B. A. 1963. Isolation and characterization of several cellulolytic bacteria from in vitro rumen fermentations. J. Dairy Sci. 46:217 https://doi.org/10.3168/jds.S0022-0302(63)89009-8
  4. Dehority, B. A. 2003. Rumen Microbiology. Nottingham University Press. Nottingham, U.K
  5. Denigan, M. E., Huber, J. T., Alhadhrami, G. and al-Dehneh, A. 1992. Influence of feeding varying levels of Amaferm on performance of lactating dairy cows. J. Dairy Sci. 75:1616 https://doi.org/10.3168/jds.S0022-0302(92)77918-1
  6. Duvla-Iflah, Y., Maisonneuve, S. and Ouriet, M. F. 1998. Effect of fermented milk intake on plasmid transfer and on the persistence of transconjugants in the digestive tract of gnotobiotic mice. Antonie Van Leeuwenhoek. 73(1):95 https://doi.org/10.1023/A:1000603828184
  7. Gomez-Alarcon, R. A., Huber, J. T., Higginbotham, G. E., Wiersma, F., Ammon, D. and Taylor, B. 1991. Influence of feeding Aspergillus oryzae fermentation extract on the milk yields, eating patterns, and body temperatures of lactating cows. J. Anim. Sci. 69(4):1733
  8. Greve, L. C., Labavitch, J. M. and Hungate, R. E. 1984. $\alpha$-L-Arabinofuranosidase from Ruminococcus albus 8: purification and possible role in hydrolysis of alfalfa cell wall. Appl. Environ. Microbiol. 47:1135
  9. Henke, S. E., Demarais, S. and Pfister, J. A. 1988. Digestive capacity and diets of white-tailed deer and exotic ruminants. J. Wildl. Manage. 52:595-598 https://doi.org/10.2307/3800913
  10. Hiltner, P. and Dehority, B. A. 1983. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. Appl. Environ. Microbiol. 46:642
  11. Hobson, P. N. 1988. The Rumen Microbial Ecosystem. Elservier Science Publishers L TD. Essex, UK
  12. Holdeman, L. V., Cato, E. P. and Moore, W. E. C. 1977. Anaerobe Laboratory Manual, 4th ed., Virginia Poly tech. Inst. and State Univ. Blacksburg. Virginia. USA
  13. Hungate, R. E. 1966. The Rumen and Its Microbes. Academic Press. Inc., New York. USA
  14. Jayne-Williams, D. J. 1979. The bacterial flora of the rumen of healty and bloating calves. J. Appl. Bacteriol. 47:271 https://doi.org/10.1111/j.1365-2672.1979.tb01754.x
  15. Kohchi, C. and Tohe, A. 1986. Cloning of Candida pelliculosa beta-glucosidase gene and its expression in Saccharomyces cerevisiae. Mol. Gen. Genet. 203(1):89 https://doi.org/10.1007/BF00330388
  16. Lee, S. S., Ha, J. K. and Cheng, K. -J. 2000. Influence of an anaerobic fungal culture administration on in vivo ruminal fermentation and nutrient digestion. Anim. Feed Sci. Technol. 88:201 https://doi.org/10.1016/S0377-8401(00)00216-9
  17. Martin, S. A. and Nisbet, D. J. 1990. Effect of direct-fed microbials on rumen microbial fermentation. J. Dairy Sci. 75(6):1736 https://doi.org/10.3168/jds.S0022-0302(92)77932-6
  18. Mould, F. L., 0rskov, E. R. and Mann, S. O. 1983. Associative effects of mixed feeds. I. Effects of type and level of supplementation and the influence of the rumen fluid pH on cellulolysis in vivo and dry matter digestion of various roughages. Anim. Feed Sci. Technol. 10:15 https://doi.org/10.1016/0377-8401(83)90003-2
  19. Newbold, C. J., Wallace, R. J., Chen. X. B. and McIntosh, F. M. 1995. Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep. J. Anim. Sci. 73(6):1811
  20. Paster, B., Russell, J. B. and Yang, C. M. 1993. Phylogeny of ammonia-producing rumen bacteria Peptostreptococcus anaerobius, Clostridium sticklandii and Clostridium aminophilum. Int. J. Syst. Bacteriol. 43:107 https://doi.org/10.1099/00207713-43-1-107
  21. Slyter, L. L. 1976. Influence of acidosis on rumen function. J. Animal Sci. 43:910
  22. Stack, R. J. and Hungate, R. E. 1984. Effect of 3-phenylpropanoic acid on capsule and cellulases of Ruminococcus albus 8. Appl. Environ. Microbiol., 48:218
  23. Willams, A. G. and Withers, S. E. 1982. The effect of the carbohydrate growth substrate on the glycosidase activity of hemicellulose degrading rumen bacterial isolates. J. Appl. Bacteriol. 52:389 https://doi.org/10.1111/j.1365-2672.1982.tb05069.x
  24. Wood, T. M. and Wilson, C. A. 1984. Some properties of the endo-(1,4)-$\beta$-D-glucanase synthesised by the anaerobic cellulolytic rumen bacterium Ruminococcus albus. Can. J. Microbiol. 30:316 https://doi.org/10.1139/m84-047
  25. 김창현. 1995. 반추위 섬유소 분해 박테리아의 분리.동정 및 특성규명에 관한 연구. 서울대학교 석사학위논문
  26. 문상호, 김명화, 이상무, 전병태. 2002. 꽃사슴에 있어서 육림부산물 발효사료의 체내이용성에 관한 연구. 한국초지학회지. 22:169 https://doi.org/10.5333/KGFS.2002.22.3.169
  27. 전병태, 문상호, 이상무, 권영재. 2002. 육림부산물 말효사료 급여 꽃사슴에 있어서 채식기호성. 소화율 및 채식행동에 관한 연구. 한국초지학회지 22:177 https://doi.org/10.5333/KGFS.2002.22.2.077
  28. Leedle, J. A. Z. and Hespell, R. B. 1980. Differential carbohydrate media and anaerobic replica plating techniques in delineating carbohydrate-utilizing subgroups in rumen bacterial populations. Appl. Environ. Microbiol. 39:709
  29. SAS User's Guide : Statistics, Version 8. Edition. 1996. SAS Inst., Inc., Cary. NC. USA