DOI QR코드

DOI QR Code

THE BERGMAN KERNEL FUNCTION AND THE SZEGO KERNEL FUNCTION

  • Published : 2006.01.01

Abstract

We compute the holomorphic derivative of the harmonic measure associated to a $C^\infty$bounded domain in the plane and show that the exact Bergman kernel function associated to a $C^\infty$ bounded domain in the plane relates the derivatives of the Ahlfors map and the Szego kernel in an explicit way. We find several formulas for the exact Bergman kernel and the Szego kernel and the harmonic measure. Finally we survey some other properties of the holomorphic derivative of the harmonic measure.

References

  1. S. Bell, Solving the Dirichlet problem in the plane by means of the Cauchy integral, Indiana Univ. Math. J. 39 (1990), no. 4, 1355-1371 https://doi.org/10.1512/iumj.1990.39.39060
  2. S. Bell, Recipes for classical kernel functions associated to a multiply connected domain in the plane, Complex Variables Theory Appl. 29 (1996), no. 4, 367-378 https://doi.org/10.1080/17476939608814904
  3. S. Bell, The Szego projection and the classical objects of potential theory in the plane, Duke Math. J. 64 (1991), no. 1, 1-26 https://doi.org/10.1215/S0012-7094-91-06401-X
  4. S. Bell, The Cauchy transform, potential theory, and conformal mapping, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992
  5. S. Bell, Complexity of the classical kernel functions of potential theory, Indiana Univ. Math. J. 44 (1995), no. 4, 1337-1369
  6. Stefan Bergman, The kernel function and conformal mapping, Second, revised edition. Mathematical Surveys, No. V. American Mathematical Society, Providence, R.I., 1970
  7. Y. -B. Chung, The Bergman kernel function and the Ahlfors mapping in the plane, Indiana Univ. Math. J. 42 (1993), 1339-1348 https://doi.org/10.1512/iumj.1993.42.42061
  8. Y. -B. Chung, An expression of the Bergman kernel function in terms of the Szego kernel, J. Math. Pures Appl. 75 (1996), 1-7
  9. P. R. Garabedian, Schwarz's lemma and the Szego kernel function, Trans. Amer. Math. Soc. 67 (1949), 1-35 https://doi.org/10.2307/1990414
  10. Dennis A. Hejhal, Theta functions, kernel functions, and Abelian integrals, Memoirs of the American Mathematical Society, No. 129. American Mathematical Society, Providence, R.I., 1972
  11. N. Kerzman and E. M. Stein, The Cauchy kernel, the Szego kernel, and the Riemann mapping function, Math. Ann. 236 (1978), no. 1, 85-93 https://doi.org/10.1007/BF01420257
  12. N. Kerzman and M. R. Trummer, Numerical conformal mapping via the Szego kernel, Special issue on numerical conformal mapping. J. Comput. Appl. Math. 14 (1986), no. 1-2, 111-123 https://doi.org/10.1016/0377-0427(86)90133-0
  13. Saburou Saitoh, Theory of reproducing kernels and its applications, Pitman Research Notes in Mathematics Series, 189. Longman Scientific & Technical, Harlow, 1988
  14. Menahem Schiffer, Various types of orthogonalization, Duke Math. J. 17 (1950), 329-366 https://doi.org/10.1215/S0012-7094-50-01731-5
  15. M. Trummer, An efficient implementation of a conformal mapping method based on the Szego kernel, SIAM J. Numer. Anal. 23 (1986), no. 4, 853-872 https://doi.org/10.1137/0723055