• Published : 2006.01.01


We compute the holomorphic derivative of the harmonic measure associated to a $C^\infty$bounded domain in the plane and show that the exact Bergman kernel function associated to a $C^\infty$ bounded domain in the plane relates the derivatives of the Ahlfors map and the Szego kernel in an explicit way. We find several formulas for the exact Bergman kernel and the Szego kernel and the harmonic measure. Finally we survey some other properties of the holomorphic derivative of the harmonic measure.


  1. S. Bell, Solving the Dirichlet problem in the plane by means of the Cauchy integral, Indiana Univ. Math. J. 39 (1990), no. 4, 1355-1371
  2. S. Bell, Recipes for classical kernel functions associated to a multiply connected domain in the plane, Complex Variables Theory Appl. 29 (1996), no. 4, 367-378
  3. S. Bell, The Szego projection and the classical objects of potential theory in the plane, Duke Math. J. 64 (1991), no. 1, 1-26
  4. S. Bell, The Cauchy transform, potential theory, and conformal mapping, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992
  5. S. Bell, Complexity of the classical kernel functions of potential theory, Indiana Univ. Math. J. 44 (1995), no. 4, 1337-1369
  6. Stefan Bergman, The kernel function and conformal mapping, Second, revised edition. Mathematical Surveys, No. V. American Mathematical Society, Providence, R.I., 1970
  7. Y. -B. Chung, The Bergman kernel function and the Ahlfors mapping in the plane, Indiana Univ. Math. J. 42 (1993), 1339-1348
  8. Y. -B. Chung, An expression of the Bergman kernel function in terms of the Szego kernel, J. Math. Pures Appl. 75 (1996), 1-7
  9. P. R. Garabedian, Schwarz's lemma and the Szego kernel function, Trans. Amer. Math. Soc. 67 (1949), 1-35
  10. Dennis A. Hejhal, Theta functions, kernel functions, and Abelian integrals, Memoirs of the American Mathematical Society, No. 129. American Mathematical Society, Providence, R.I., 1972
  11. N. Kerzman and E. M. Stein, The Cauchy kernel, the Szego kernel, and the Riemann mapping function, Math. Ann. 236 (1978), no. 1, 85-93
  12. N. Kerzman and M. R. Trummer, Numerical conformal mapping via the Szego kernel, Special issue on numerical conformal mapping. J. Comput. Appl. Math. 14 (1986), no. 1-2, 111-123
  13. Saburou Saitoh, Theory of reproducing kernels and its applications, Pitman Research Notes in Mathematics Series, 189. Longman Scientific & Technical, Harlow, 1988
  14. Menahem Schiffer, Various types of orthogonalization, Duke Math. J. 17 (1950), 329-366
  15. M. Trummer, An efficient implementation of a conformal mapping method based on the Szego kernel, SIAM J. Numer. Anal. 23 (1986), no. 4, 853-872