DOI QR코드

DOI QR Code

q-EXTENSIONS OF GENOCCHI NUMBERS

  • CENKCI MEHMET (Akdeniz University Department of Mathematics) ;
  • CAN MUMUN (Akdeniz University Department of Mathematics) ;
  • KURT VELI (Akdeniz University Department of Mathematics)
  • Published : 2006.01.01

Abstract

In this paper q-extensions of Genocchi numbers are defined and several properties of these numbers are presented. Properties of q-Genocchi numbers and polynomials are used to construct q-extensions of p-adic measures which yield to obtain p-adic interpolation functions for q-Genocchi numbers. As an application, general systems of congruences, including Kummer-type congruences for q-Genocchi numbers are proved.

References

  1. L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000 https://doi.org/10.1215/S0012-7094-48-01588-9
  2. L. Carlitz, q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc. 76 (1954), 332-350 https://doi.org/10.2307/1990772
  3. L. Carlitz, The Staudt-Clausen theorem, Math. Mag. 34 (1961), 131-146 https://doi.org/10.2307/2688488
  4. M. Cenkci, M. Can, and V. Kurt, p-adic interpolation functions and Kummer-type congruences for q-twisted and q-generalized twisted Euler numbers, Advan. Stud. Contem. Math. 9 (2004), no. 2, 203-216
  5. G. -N. Han and J. Zeng, On a sequence that generalizes the median Genocchi numbers, Ann. Sci. Math. Quebec 23 (1999), no. 1, 63-72
  6. G. -N. Han, A. Randrianarivony, and J. Zeng, Un autre q-analogue des nombres d'Euler, Seminaire Lotharingien de Combinatorie 42 Art. B42e, (1999), 22pp. (electronic)
  7. F. T. Howard, Applications of a recurrence formula for the Bernoulli numbers, J. Number Theory 52 (1995), no. 1, 157-172 https://doi.org/10.1006/jnth.1995.1062
  8. K. Iwasawa, Lectures on p-adic L-functions, Ann. of Math. Studies Vol: 74, Princeton Univ. Press, Princeton, N. J., 1972
  9. L. -C. Jang, T. Kim, D. -H. Lee, and D. -W. Park, An application of polylogarithms in the analogs of Genocchi numbers, Notes Number Theory Discrete Math. 7 (2001), no. 3, 65-69
  10. T. Kim, On explicit formulas of p-adic q-L-functions, Kyushu J. Math. 48 (1994), no. 1, 73-86 https://doi.org/10.2206/kyushujm.48.73
  11. T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76 (1999), no. 2, 320-329 https://doi.org/10.1006/jnth.1999.2373
  12. T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288-299
  13. T. Kim, On p-adic q-L-functions and sums of powers, Discrete Math. 252 (2002), no. 1-3, 179-187 https://doi.org/10.1016/S0012-365X(01)00293-X
  14. T. Kim, Non-Archimedean q-integrals associated with multiple Changhee q- Bernoulli polynomials, Russ. J. Math. Phys. 10 (2003), no. 1, 91-98
  15. T. Kim, On Euler-Barnes multiple zeta functions, Russ. J. Math. Phys. 10 (2003), no. 3, 261-267
  16. T. Kim, A note on q-Volkenborn integration,(English. English summary) Proc. Jangjeon Math. Soc. 8 (2005), no. 1, 13-17
  17. T. Kim, L. -C. Jang, and H. K. Pak, A note on q-Euler and Genocchi numbers, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 8, 139-141
  18. T. Kim, Y. Simsek, and H. M. Srivastava, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russ. J. Math. Phys. 12 (2005), no. 2, 201-228
  19. N. Koblitz, On Carlitz's q-Bernoulli numbers, J. Number Theory 14 (1982), no. 3, 332-339 https://doi.org/10.1016/0022-314X(82)90068-3
  20. J. Satoh, q-analogue of Riemann's $\zeta$-function and q-Euler numbers, J. Number Theory 31 (1989), no. 3, 346-362 https://doi.org/10.1016/0022-314X(89)90078-4
  21. P. T. Young, Congruences for Bernoulli, Euler and Stirling numbers, J. Number Theory 78 (1999), no. 2, 204-227 https://doi.org/10.1006/jnth.1999.2401
  22. P. T. Young, On the behaviour of some two-variable p-adic L-functions, J. Number Theory 98 (2003), no. 1, 67-88 https://doi.org/10.1016/S0022-314X(02)00031-8

Cited by

  1. On a Class ofq-Bernoulli,q-Euler, andq-Genocchi Polynomials vol.2014, 2014, https://doi.org/10.1155/2014/696454
  2. On the multiple q-Genocchi and Euler numbers vol.15, pp.4, 2008, https://doi.org/10.1134/S1061920808040055
  3. AN EXTENSION OF GENERALIZED EULER POLYNOMIALS OF THE SECOND KIND vol.32, pp.3_4, 2014, https://doi.org/10.14317/jami.2014.465
  4. Some Relations of the Twistedq-Genocchi Numbers and Polynomials with Weightαand Weak Weightβ vol.2012, 2012, https://doi.org/10.1155/2012/860921
  5. -Analogues of the Bernoulli and Genocchi Polynomials and the Srivastava-Pintér Addition Theorems vol.2012, 2012, https://doi.org/10.1155/2012/169348
  6. Arithmetic Identities Involving Genocchi and Stirling Numbers vol.2009, 2009, https://doi.org/10.1155/2009/621068
  7. Some Identities on the Generalizedq-Bernoulli,q-Euler, andq-Genocchi Polynomials vol.2013, 2013, https://doi.org/10.1155/2013/293532
  8. Sums of finite products of Genocchi functions vol.2017, pp.1, 2017, https://doi.org/10.1186/s13662-017-1325-9
  9. Some generalizations of the Apostol–Genocchi polynomials and the Stirling numbers of the second kind vol.217, pp.12, 2011, https://doi.org/10.1016/j.amc.2010.12.048
  10. ON THE GENERALIZED EULER POLYNOMIALS OF THE SECOND KIND vol.31, pp.5_6, 2013, https://doi.org/10.14317/jami.2013.623
  11. On the Generalized q-Genocchi Numbers and Polynomials of Higher-Order vol.2011, 2011, https://doi.org/10.1155/2011/424809
  12. q-Hardy–Berndt type sums associated with q-Genocchi type zeta and q-l-functions vol.71, pp.12, 2009, https://doi.org/10.1016/j.na.2008.11.014
  13. On a class of generalized q-Bernoulli and q-Euler polynomials vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1847-2013-115
  14. On a class of q-Bernoulli and q-Euler polynomials vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1847-2013-108