DOI QR코드

DOI QR Code

EINSTEIN SPACES AND CONFORMAL VECTOR FIELDS

  • KIM DONG-SOO (Department of Mathematics Chonnam National University) ;
  • KIM YOUNG HO (Department of Mathematics Kyungpook National University) ;
  • PARK SEONG-HEE (Department of Mathematics Chonnam National University)
  • Published : 2006.01.01

Abstract

We study Riemannian or pseudo-Riemannian manifolds which admit a closed conformal vector field. Subject to the condition that at each point $p{\in}M^n$ the set of conformal gradient vector fields spans a non-degenerate subspace of TpM, using a warped product structure theorem we give a complete description of the space of conformal vector fields on arbitrary non-Ricci flat Einstein spaces.

References

  1. H. W. Brinkmann, Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1925), 119-145 https://doi.org/10.1007/BF01208647
  2. D. Eardley, J. Isenberg, J. Marsden, and V. Moncrief, Homothetic and conformal symmetries of solutions to Einstein's equations, Comm. Math. Phys. 106 (1986), 137-158 https://doi.org/10.1007/BF01210929
  3. D. Garfinkle and Q. Tian, Spacetimes with cosmological constant and a con-formal Killing field have constant curvature, Class. Quantum Grav. 4 (1987), 137-139 https://doi.org/10.1088/0264-9381/4/1/016
  4. W. D. Halford, Brinkmann's theorem in general relativity, Gen. Rel. Grav. 14 (1982), 1193-1195 https://doi.org/10.1007/BF00762643
  5. G. S. Hall, Symmetries and geometry in general relativity, Diff. Geom. Appl. 1 (1991), 35-45 https://doi.org/10.1016/0926-2245(91)90020-A
  6. Y. Kerbrat, Transformations conformes des varietes pseudo-riemanniannes, J. Diff. Geom. 11 (1976), 547-571 https://doi.org/10.4310/jdg/1214433724
  7. M. G. Kerckhove, Conformal transformations of pseudo-Riemannian Einstein manifolds, Thesis, Brown University (1988)
  8. M. G. Kerckhove, The structure of Einstein spaces admitting conformal motions, Class. Quantum Grav. 8 (1991), 819-825 https://doi.org/10.1088/0264-9381/8/5/007
  9. D. -S. Kim and Y. H. Kim, A characterization of space forms, Bull. Korean Math. Soc. 35 (1998), no. 4, 757-767
  10. D. -S. Kim and Y. H. Kim, Spaces of conformal vector fields on pseudo-Riemannian manifolds, J. Korean Math. Soc. 42 (2005), no. 3, 469-482 https://doi.org/10.4134/BKMS.2005.42.3.469
  11. D. -S. Kim, Y. H. Kim, S. -B. Kim, and S. -H. Park, Conformal vector fields and totally umbilic hypersurfaces of a pseudo-Riemannian space form, Bull. Korean Math. Soc. 39 (2002), no. 4, 671-680 https://doi.org/10.4134/BKMS.2002.39.4.671
  12. W. Kuhnel and H. B. Rademacher, Twistor spinors with zeros, Int. J. Math. 5 (1994), 877-895 https://doi.org/10.1142/S0129167X94000450
  13. W. Kuhnel and H. B. Rademacher, Conformal vector fields on pseudo-Riemannian spaces, Diff. Geom. Appl. 7 (1997), 237-250 https://doi.org/10.1016/S0926-2245(96)00052-6
  14. W. Kuhnel and H. B. Rademacher, Essential conformal fields in pseudo-Riemannian geometry, J. Math. Pures Appl. (9) 74 (1995), 453-481
  15. B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983
  16. P. Penrose and W. Rindler, Spinors and space time, Vol. 1,2, Cambridge Monograph in Math. Physics, 1986
  17. H. B. Rademacher, Generalized Killing Spinors with imaginary Killing function and conformal Killing fields,, In: Global differential geometry and global analysis(Berlin, 1990), Lecture Notes in Math. 1481, Springer, Berlin, 1991, 192-198 https://doi.org/10.1007/BFb0083642
  18. R. Sharma and K. L. Duggal, A characterization of affine conformal vector field, C. R. Math. Rep. Acad. Sci. Canada 7 (1985), 201-205
  19. K. Yano, The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957
  20. W. Kuhnel, Conformal transformations between Einstein spaces, In: Conformal Geometry, Kulkarni, R. S. and Pinkal, U. Ed., Aspects Math. E12 (1988), Vieweg, Braunschweig, 105-146
  21. K. L. Duggal and R. Sharma, Symmetries of spacetimes and Riemannian manifolds, Kluwer Academic Publishers, Dordrecht, 1999
  22. B. T. McInnes, Brinkmann's theorem in general relativity and non-Riemannian field theories, Gen. Rel. Grav. 12 (1980), 767-773 https://doi.org/10.1007/BF00771866