• SIMSEK YILMAZ (Akdeniz University Faculty of Art and Science Department of Mathematics)
  • Published : 2006.01.01


The goal of this paper is to define p-adic Hardy sums and p-adic q-higher-order Hardy-type sums. By using these sums and p-adic q-higher-order Dedekind sums, we construct p-adic continuous functions for an odd prime. These functions contain padic q-analogue of higher-order Hardy-type sums. By using an invariant p-adic q-integral on $\mathbb{Z}_p$, we give fundamental properties of these sums. We also establish relations between p-adic Hardy sums, Bernoulli functions, trigonometric functions and Lambert series.


  1. T. M. Apostol, Generalized Dedekind sums and transformation formulae of certain Lambert series, Duke Math. J. 17 (1950), 147-157
  2. T. M. Apostol, Theorems on Generalized Dedekind Sums, Pacific J. Math. 2 (1952), 1-9
  3. B. C. Berndt and L. A. Goldberg, Analytic properties of arithmetic sums arising in the theory of the classical theta functions, SIAM J. Math. Anal. 15 (1984), no. 1, 143-150
  4. M. Cenkci, M. Can, and V. Kurt, Generalized Hardy sums, (preprint)
  5. U. Dieter, Cotangent sums, a futher generalization of Dedekind sums, J. Number Theory 18 (1984), 289-305
  6. T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76 (1999), no. 2, 320-329
  7. T. Kim, On p-adic q- Bernoulli numbers, J. Korean Math. Soc. 37 (2000), no. 1, 21-30
  8. T. Kim, A note on p-adic q-Dedekind sums, C. R. Acad. Bulgare Soc. 54 (2001), no. 10, 37-42
  9. T. Kim, q-Volkenborn integration, Russ. J. Math Phys. 9 (2002), no. 3, 288-299
  10. T. Kim, On Euler-Barnes multiple zeta functions, Russ. J. Math. Phys. 10 (2003), no. 3, 261-267
  11. T. Kim, Analytic continuation of multiple q-zeta functions and their values at negative integers, Russ. J. Math Phys. 11 (2004), 71-76
  12. T. Kim, p-adic q-integrals associated with the Changhee-Barnes' q-Bernoulli Polynomials, Integral Transform. Spec. Funct. 15 (2004), no. 5, 415-420
  13. T. Kim and H. S. Kim, Remark on p-adic q-Bernoulli numbers, Algebraic number theory (Hapcheon/Saga, 1996). Adv. Stud. Contemp. Math. (Pusan) 1 (1999), 127-136
  14. A. Kudo, On p-adic Dedekind Sums, Nagoya Math. J. 144 (1996), 155-170
  15. H. Rademacher and A. Whiteman, Theorems on Dedekind sums, Amer. J. Math. 63 (1941), 377-407
  16. K. H. Rosen and W. M. Snyder, p-adic Dedekind Sums, J. Reine Angew. Math. 361 (1985), 23-26
  17. Y. Simsek, Theorems on three-term relations for Hardy sums, Turkish J. Math. 22 (1998), no. 2, 153-162
  18. Y. Simsek, Relation between theta-function Hardy sums Eisenstein and Lambert series in the transformation formula of log $\eta_{g,h}$(z), J. Number Theory 99 (2003), no. 2, 338-360
  19. Y. Simsek, On generalized Hardy Sums $S_5$(h, k), Ukrain. Mat. Zh. 56 (2004), no. 10, 1434-1440; translation in Ukrainian Math. J. 56 (2004), no. 10, 1712-1719 (2005)
  20. Y. Simsek and Y. Cetinkaya, On p-adic Hardy sums, XV. National Mathe-matic Symposium (XV. Ulusal Matematik Sempozyumu), 4-7 September, Mer-sin(Turkey) (2002), 105-112
  21. R. Sitaramachandrarao, Dedekind and Hardy Sums, Acta Arith. 48 (1987), no. 4, 325-340

Cited by

  1. q-Hardy–Berndt type sums associated with q-Genocchi type zeta and q-l-functions vol.71, pp.12, 2009,
  2. Special functions related to Dedekind-type DC-sums and their applications vol.17, pp.4, 2010,
  3. Transformation formulas of a character analogue of $$\log \theta _{2}(z)$$logθ2(z) pp.1572-9303, 2018,