DOI QR코드

DOI QR Code

τ-INJECTIVE SUBMODULES OF INDECOMPOSABLE INJECTIVE MODULES

  • CRIVEI SEPTIMIU (Faculty of Mathematics and Compouter Science Babes-Bolyai University)
  • Published : 2006.01.01

Abstract

Let $\tau$ be a hereditary torsion theory and let p be a prime ideal of a commutative ring R. We study the existence of (minimal) $\tau-injective$ submodules of the injective hull of R/p.

References

  1. T. Albu, G. Krause and M. L. Teply, Bijective relative Gabriel correspondence over rings with torsion theoretic Krull dimension, J. Algebra 243 (2001), no. 2, 644-674 https://doi.org/10.1006/jabr.2001.8855
  2. S. Crivei, On m-injective modules over noetherian rings, Pure Math. Appl. 11 (2000), no. 2, 173-181
  3. S. Crivei, Injective modules relative to the Dickson torsion theory, Vietnam J. Math. 29 (2001), no. 4, 369-378
  4. S. Crivei, On $\tau$--injective hulls of modules, Publ. Math. Debrecen 61 (2002), no. 1-2, 145-155
  5. S. Crivei, On $\tau$-completely decomposable modules, Bull. Austral. Math. Soc. 70 (2004), no. 1, 163-175 https://doi.org/10.1017/S0004972700035899
  6. S. E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223-235 https://doi.org/10.2307/1994341
  7. B. Eckmann and A. Schopf, Uber injektive Moduln, Arch. Math. 4 (1953), 75-78 https://doi.org/10.1007/BF01899665
  8. C. Faith, On the structure of indecomposable injective modules, Comm. Algebra 2 (1974), 559-571 https://doi.org/10.1080/00927877408822026
  9. C. Faith, Indecomposable injective modules and a theorem of Kaplansky, Comm. Algebra 30 (2002), no. 12, 5875-5889 https://doi.org/10.1081/AGB-120016019
  10. C. Faith and E. Walker, Direct sum representations of injective modules, J. Al-gebra 5 (1967), 203-221 https://doi.org/10.1016/0021-8693(67)90035-X
  11. J. S. Golan, Torsion theories, Pitman Monographs and Surveys in Pure and Applied Mathematics, 29. Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986
  12. Y. Hirano, On injective hulls of simple modules, J. Algebra 225 (2000), no. 1, 299-308 https://doi.org/10.1006/jabr.1999.8124
  13. P. Kim and G. Krause, Local bijective Gabriel correspondence and relative fully boundedness in $\tau$-noetherian rings, Comm. Algebra 27 (1999), no. 7, 3339-3351 https://doi.org/10.1080/00927879908826631
  14. T. G. Kucera, Explicit description of injective envelopes: Generalizations of a result of Northcott, Comm. Algebra 17 (1989), no. 11, 2703-2715 https://doi.org/10.1080/00927878908823871
  15. S. C. Lee, Direct sum decompositions of indecomposable injective modules, Bull. Korean Math. Soc. 35 (1998), no. 1, 33-43
  16. K. Masaike and T. Horigome, Direct sum of $\tau$-injective modules, Tsukuba J. Math. 4 (1980), no. 1, 77-81 https://doi.org/10.21099/tkbjm/1496158793
  17. E. Matlis, Injective modules over noetherian rings, Pacific J. Math. 8 (1958), 511-528 https://doi.org/10.2140/pjm.1958.8.511
  18. S. Mohamed and S. Singh, Decomposition of $\sigma$-injective modules, Comm. Algebra 9 (1981), no. 6, 601-611 https://doi.org/10.1080/00927878108822604
  19. D. G. Northcott, Injective envelopes and inverse polynomials, J. London Math. Soc.(2) 8 (1974), 290-296 https://doi.org/10.1112/jlms/s2-8.2.290
  20. D. W. Sharpe and P. Vamos, Injective modules, Cambridge University Press, London-New York, 1972
  21. B. Stenstrom, Rings of quotients Die Grundlehren der Mathematischen Wis-senschaften, Springer-Verlag, New York-Heidelberg, 1975
  22. J. Xu, Flat covers of modules, Lecture Notes in Mathematics, 1634. Springer-Verlag, Berlin, 1996

Cited by

  1. Change of ring and torsion-theoretic injectivity vol.75, pp.01, 2007, https://doi.org/10.1017/S0004972700039022