An Atomistic Modeling for Electromechanical Nanotube Memory Study

원자단위 Electromechanical 모델링을 통한 나노튜브 메모리 연구

  • 이강환 (한국기술교육대학교 정보기술공학부) ;
  • 권오근 (세명대학교 인터넷정보학부)
  • Published : 2006.02.01


We have presented a nanoelectromechanical (NEM) model based on atomistic simulations. Our models were applied to a NEM device as called a nanotube random access memory (NRAM) operated by an atomistic capacitive model including a tunneling current model. We have performed both static and dynamic analyses of a NRAM device. The turn-on voltage obtained from molecular dynamics simulations was less than the half of the turn-on voltage obtained from the static simulation. Since the suspended carbon nanotube (CNT) oscillated with the amplitude for the oscillation center under an externally applied force, the quantity of the CNT-gold interaction in the static analysis was different from that in the dynamic analysis. When the gate bias was applied, the oscillation centers obtained from the static analysis were different from those obtained from the dynamics analysis. Therefore, for the range of the potential difference that the CNT-gold interaction effects in the static analysis were negligible, the vibrations of the CNT in the dynamics analysis significantly affected the CNT-gold interaction energy and the turn-on voltage. The turn-on voltage and the tunneling resistance obtained from our tunneling current model were in good agreement with previous experimental and theoretical works.


  1. S. Iijima, 'Helical microtubules of graphitic carbon', Nature, Vol. 354, No. 6348, p. 56, 1991
  2. W. A. Goddard, D. W. Brenner, S. E. Lyshevski, and G. J. Iagrate, 'Handbook of Nanoscience, Engineering, and Technology', CRC Press, New York, p. 23, 2003
  3. M. Dequesnes, S. V. Rotkin, and N. R. Aluuru, 'Calculation of pull-in voltages for carbon -nanotube-based nanoelectromechanical switches', Nanotechnology, Vol. 13, No.1, p. 120, 2002
  4. J. M. Kinaret, T. Nord, and S. Viefers, 'A carbon-nanotube-based nanorelay', Appl. Phys. Lett., Vol. 82, No. 8, p. 1287, 2003
  5. C. Ke and H. D. Espinosa, 'Feedback controlled nanocantilever device', Appl. Phys. Lett., Vol. 85, No. 4, p. 681, 2004
  6. L. M. Jonsson, T. Nord, J. M. Kinaret, and S. Viefers, 'Effects of surface forces and phonon dissipation in a three-terminal nanorelay', J. Appl. Phys., Vol. 96, No. 1, p. 629, 2004
  7. L. M. Jonsson, S. Axelsson, T. Nord, S. Viefers, and J. M. Kinaret, 'High frequency properties of a CNT-based nanorelay', Nanotechnology, Vol. 15, No. 11, p. 1497, 2004
  8. S. W. Lee, D. S. Lee, R. E. Morjan, S. H. Jhang, M. Sveningsson, O. A. Nerushev, Y. W. Park, and E. E. B. Campbell, 'A three-terminal carbon nanorelay', Nano Lett., Vol. 4, No. 10, p. 2027, 2004
  9. H. J. Hwang and J. W. Kang, 'Carbonnanotube-based nanoelectromechanical switch', Physica E, Vol. 27, Iss. 1-2, p. 163, 2005
  10. J. W. Ward, M. Meinhold, B. M. Segal, J. Berg, R. Sen, R. Sivarajan, D. K. Brock, and T. Rueckes, 'A non-volatile nanoelectromechanical memory element utilizing a fabric of carbon nanotubes', in proceedings of 2004 Non Volatile Memory Technology Symposium, Vol. 15, p. 34, 2004
  11. M. Dequesnes, Z. Tang, and N. R. Aluru, 'Static and dynamic analysis of carbon nanotube-based switches', J. Eng. Mater. Tech., Vol. 126, Iss. 3, p. 230, 2004
  12. C. Ke and H. D. Espinosa, 'Numerical analysis of nanotube-based NEMS devices. Part I: Electrostatic charge distribution on multi walled nanotubes ' , J. Appl. Mech., Vol. 72, Iss. 5, p. 721, 2005
  13. J. W. Kang, J. H. Lee, H. J. Lee, O. K. Kwon, and H. J. Hwang, 'Electromechanical modeling and simulations of nanobridge memory device', Physica E, Vol. 28, Iss. 3, p. 273, 2005
  14. S. Sapmaz, Y. M. Blanter, L. Gurevich, and H. S. J. van der Zant, 'Carbon nanotubes as nanoelectromechanical systems', Phys. Rev. B, Vol. 67, No. 23, p. 235414, 2003
  15. V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, 'A tunable carbon nanotube electromechanical oscillator', Nature, Vol. 431, No. 7006, p. 284, 2004
  16. H. Ustunel, D. Roundy, and T. A. Arias, 'Modeling a suspended nanotube oscillator', Nano Lett., Vol. 5, No. 3, p. 523, 2005
  17. S. V. Rotkin, V. Shrivastava, K. A. Bulashevich, and N. R. Aluru, 'Atomistic capacitance of a nanotube electromechanical device', Inter. J. Nanosci. Vol. 1, No. 3-4, p. 337, 2002
  18. A. Maiti and A. Ricca, 'Metal-nanotube interactions - binding energies and wetting properties', Chem. Phys. Lett., Vol. 395, Iss. 1-3, p. 7, 2004
  19. W. H. Hayt, 'Engineering Electromagnetics, 5th edition', McGraw Hill International Editions, Singapore, p. 152, 1989
  20. J. Tersoff, 'Empirical interatomic potential silicon with improved elastic properties', Phys. Rev. B, Vol. 38, No. 14, p. 9902, 1988
  21. J. Tersoff, 'Modeling solid-state chemistry: interatomic potentials for multicomponent systems', Phys. Rev. B, Vol. 39, No. 8, p. 5566, 1989
  22. D. W. Brenner, 'Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films', Phys. Rev. B, Vol. 42, No. 15, p. 9458, 1990
  23. S. Arcidiacono, J. H. Walther, D. Poulikakos, D. Passerone, and P. Koumoutsakos, 'Solidification of gold nanoparticles in carbon nanotubes', Phys. Rev. Lett., Vol. 94, No. 10, p, 105502, 2005
  24. P. M. Agrawal, B. M. Rice, and D. L. Thompson, 'Predicting trends in rate parameters for self-diffusion on FCC metal surfaces', Surf. Sci., Vol. 515, Iss. 1, p. 21, 2002
  25. J. W. Kang, K. R. Byun, and H. J. Hwang, ' Twist of hypothetical silicon nanotubes', Model. Simul. Mater. Sci. Eng., Vol. 12, No. 1, p. 1, 2004
  26. J. W. Kang and H. J. Hwang, 'Structural properties of caesium encapsulated in carbon nanotubes', Nanotechnology, Vol. 15, No.1, p. us, 2004
  27. J. W. Kang and H. J. Hwang, 'Fullerene nano ball bearings: an atomistic study', Nanotechnology, Vol. 15, No. 5, p. 614, 2004
  28. J. W. Kang and H. J. Hwang, ' The electroemission of endo-fullerenes from a nanotube', Nanotechnology, Vol. 15, No. 12, p. 1825, 2004
  29. J. W. Kang and H. J. Hwang, 'A bucky shuttle three-terminal switching device: classical molecular dynamics study', Physica E, Vol. 23, Iss. 1-2, p. 36, 2004
  30. J. W. Kang, J. H. Lee, H. J. Lee, and H. J. Hwang, 'A study on carbon nanotube bridge as a electromechanical memory device', Physica E, Vol. 27, Iss. 3, p. 332, 2005