Journal of the Korean Institute of Electrical and Electronic Material Engineers (한국전기전자재료학회논문지)
- Volume 19 Issue 2
- /
- Pages.116-125
- /
- 2006
- /
- 1226-7945(pISSN)
- /
- 2288-3258(eISSN)
DOI QR Code
An Atomistic Modeling for Electromechanical Nanotube Memory Study
원자단위 Electromechanical 모델링을 통한 나노튜브 메모리 연구
- Published : 2006.02.01
Abstract
We have presented a nanoelectromechanical (NEM) model based on atomistic simulations. Our models were applied to a NEM device as called a nanotube random access memory (NRAM) operated by an atomistic capacitive model including a tunneling current model. We have performed both static and dynamic analyses of a NRAM device. The turn-on voltage obtained from molecular dynamics simulations was less than the half of the turn-on voltage obtained from the static simulation. Since the suspended carbon nanotube (CNT) oscillated with the amplitude for the oscillation center under an externally applied force, the quantity of the CNT-gold interaction in the static analysis was different from that in the dynamic analysis. When the gate bias was applied, the oscillation centers obtained from the static analysis were different from those obtained from the dynamics analysis. Therefore, for the range of the potential difference that the CNT-gold interaction effects in the static analysis were negligible, the vibrations of the CNT in the dynamics analysis significantly affected the CNT-gold interaction energy and the turn-on voltage. The turn-on voltage and the tunneling resistance obtained from our tunneling current model were in good agreement with previous experimental and theoretical works.
File
References
- S. Iijima, 'Helical microtubules of graphitic carbon', Nature, Vol. 354, No. 6348, p. 56, 1991
- W. A. Goddard, D. W. Brenner, S. E. Lyshevski, and G. J. Iagrate, 'Handbook of Nanoscience, Engineering, and Technology', CRC Press, New York, p. 23, 2003
- M. Dequesnes, S. V. Rotkin, and N. R. Aluuru, 'Calculation of pull-in voltages for carbon -nanotube-based nanoelectromechanical switches', Nanotechnology, Vol. 13, No.1, p. 120, 2002 https://doi.org/10.1088/0957-4484/13/1/325
- J. M. Kinaret, T. Nord, and S. Viefers, 'A carbon-nanotube-based nanorelay', Appl. Phys. Lett., Vol. 82, No. 8, p. 1287, 2003 https://doi.org/10.1063/1.1557324
- C. Ke and H. D. Espinosa, 'Feedback controlled nanocantilever device', Appl. Phys. Lett., Vol. 85, No. 4, p. 681, 2004 https://doi.org/10.1063/1.1767606
- L. M. Jonsson, T. Nord, J. M. Kinaret, and S. Viefers, 'Effects of surface forces and phonon dissipation in a three-terminal nanorelay', J. Appl. Phys., Vol. 96, No. 1, p. 629, 2004 https://doi.org/10.1063/1.1756689
- L. M. Jonsson, S. Axelsson, T. Nord, S. Viefers, and J. M. Kinaret, 'High frequency properties of a CNT-based nanorelay', Nanotechnology, Vol. 15, No. 11, p. 1497, 2004 https://doi.org/10.1088/0957-4484/15/11/022
- S. W. Lee, D. S. Lee, R. E. Morjan, S. H. Jhang, M. Sveningsson, O. A. Nerushev, Y. W. Park, and E. E. B. Campbell, 'A three-terminal carbon nanorelay', Nano Lett., Vol. 4, No. 10, p. 2027, 2004 https://doi.org/10.1021/nl049053v
- H. J. Hwang and J. W. Kang, 'Carbonnanotube-based nanoelectromechanical switch', Physica E, Vol. 27, Iss. 1-2, p. 163, 2005 https://doi.org/10.1016/j.physe.2004.11.004
- J. W. Ward, M. Meinhold, B. M. Segal, J. Berg, R. Sen, R. Sivarajan, D. K. Brock, and T. Rueckes, 'A non-volatile nanoelectromechanical memory element utilizing a fabric of carbon nanotubes', in proceedings of 2004 Non Volatile Memory Technology Symposium, Vol. 15, p. 34, 2004
- M. Dequesnes, Z. Tang, and N. R. Aluru, 'Static and dynamic analysis of carbon nanotube-based switches', J. Eng. Mater. Tech., Vol. 126, Iss. 3, p. 230, 2004 https://doi.org/10.1115/1.1751180
- C. Ke and H. D. Espinosa, 'Numerical analysis of nanotube-based NEMS devices. Part I: Electrostatic charge distribution on multi walled nanotubes ' , J. Appl. Mech., Vol. 72, Iss. 5, p. 721, 2005 https://doi.org/10.1115/1.1985434
- J. W. Kang, J. H. Lee, H. J. Lee, O. K. Kwon, and H. J. Hwang, 'Electromechanical modeling and simulations of nanobridge memory device', Physica E, Vol. 28, Iss. 3, p. 273, 2005 https://doi.org/10.1016/j.physe.2005.03.016
- S. Sapmaz, Y. M. Blanter, L. Gurevich, and H. S. J. van der Zant, 'Carbon nanotubes as nanoelectromechanical systems', Phys. Rev. B, Vol. 67, No. 23, p. 235414, 2003 https://doi.org/10.1103/PhysRevB.67.235414
- V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, 'A tunable carbon nanotube electromechanical oscillator', Nature, Vol. 431, No. 7006, p. 284, 2004
- H. Ustunel, D. Roundy, and T. A. Arias, 'Modeling a suspended nanotube oscillator', Nano Lett., Vol. 5, No. 3, p. 523, 2005 https://doi.org/10.1021/nl0481371
- S. V. Rotkin, V. Shrivastava, K. A. Bulashevich, and N. R. Aluru, 'Atomistic capacitance of a nanotube electromechanical device', Inter. J. Nanosci. Vol. 1, No. 3-4, p. 337, 2002
- A. Maiti and A. Ricca, 'Metal-nanotube interactions - binding energies and wetting properties', Chem. Phys. Lett., Vol. 395, Iss. 1-3, p. 7, 2004 https://doi.org/10.1016/j.cplett.2004.07.024
- W. H. Hayt, 'Engineering Electromagnetics, 5th edition', McGraw Hill International Editions, Singapore, p. 152, 1989
- J. Tersoff, 'Empirical interatomic potential silicon with improved elastic properties', Phys. Rev. B, Vol. 38, No. 14, p. 9902, 1988
- J. Tersoff, 'Modeling solid-state chemistry: interatomic potentials for multicomponent systems', Phys. Rev. B, Vol. 39, No. 8, p. 5566, 1989 https://doi.org/10.1103/PhysRevB.39.5566
- D. W. Brenner, 'Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films', Phys. Rev. B, Vol. 42, No. 15, p. 9458, 1990
- S. Arcidiacono, J. H. Walther, D. Poulikakos, D. Passerone, and P. Koumoutsakos, 'Solidification of gold nanoparticles in carbon nanotubes', Phys. Rev. Lett., Vol. 94, No. 10, p, 105502, 2005 https://doi.org/10.1103/PhysRevLett.94.105502
- P. M. Agrawal, B. M. Rice, and D. L. Thompson, 'Predicting trends in rate parameters for self-diffusion on FCC metal surfaces', Surf. Sci., Vol. 515, Iss. 1, p. 21, 2002 https://doi.org/10.1016/S0039-6028(02)01916-7
- J. W. Kang, K. R. Byun, and H. J. Hwang, ' Twist of hypothetical silicon nanotubes', Model. Simul. Mater. Sci. Eng., Vol. 12, No. 1, p. 1, 2004 https://doi.org/10.1088/0965-0393/12/1/001
- J. W. Kang and H. J. Hwang, 'Structural properties of caesium encapsulated in carbon nanotubes', Nanotechnology, Vol. 15, No.1, p. us, 2004 https://doi.org/10.1088/0957-4484/15/1/022
- J. W. Kang and H. J. Hwang, 'Fullerene nano ball bearings: an atomistic study', Nanotechnology, Vol. 15, No. 5, p. 614, 2004 https://doi.org/10.1088/0957-4484/15/5/036
- J. W. Kang and H. J. Hwang, ' The electroemission of endo-fullerenes from a nanotube', Nanotechnology, Vol. 15, No. 12, p. 1825, 2004 https://doi.org/10.1088/0957-4484/15/12/023
- J. W. Kang and H. J. Hwang, 'A bucky shuttle three-terminal switching device: classical molecular dynamics study', Physica E, Vol. 23, Iss. 1-2, p. 36, 2004 https://doi.org/10.1016/j.physe.2003.11.271
- J. W. Kang, J. H. Lee, H. J. Lee, and H. J. Hwang, 'A study on carbon nanotube bridge as a electromechanical memory device', Physica E, Vol. 27, Iss. 3, p. 332, 2005 https://doi.org/10.1016/j.physe.2004.12.009