DOI QR코드

DOI QR Code

An Atomistic Modeling for Electromechanical Nanotube Memory Study

원자단위 Electromechanical 모델링을 통한 나노튜브 메모리 연구

  • 이강환 (한국기술교육대학교 정보기술공학부) ;
  • 권오근 (세명대학교 인터넷정보학부)
  • Published : 2006.02.01

Abstract

We have presented a nanoelectromechanical (NEM) model based on atomistic simulations. Our models were applied to a NEM device as called a nanotube random access memory (NRAM) operated by an atomistic capacitive model including a tunneling current model. We have performed both static and dynamic analyses of a NRAM device. The turn-on voltage obtained from molecular dynamics simulations was less than the half of the turn-on voltage obtained from the static simulation. Since the suspended carbon nanotube (CNT) oscillated with the amplitude for the oscillation center under an externally applied force, the quantity of the CNT-gold interaction in the static analysis was different from that in the dynamic analysis. When the gate bias was applied, the oscillation centers obtained from the static analysis were different from those obtained from the dynamics analysis. Therefore, for the range of the potential difference that the CNT-gold interaction effects in the static analysis were negligible, the vibrations of the CNT in the dynamics analysis significantly affected the CNT-gold interaction energy and the turn-on voltage. The turn-on voltage and the tunneling resistance obtained from our tunneling current model were in good agreement with previous experimental and theoretical works.

References

  1. S. Iijima, 'Helical microtubules of graphitic carbon', Nature, Vol. 354, No. 6348, p. 56, 1991
  2. W. A. Goddard, D. W. Brenner, S. E. Lyshevski, and G. J. Iagrate, 'Handbook of Nanoscience, Engineering, and Technology', CRC Press, New York, p. 23, 2003
  3. M. Dequesnes, S. V. Rotkin, and N. R. Aluuru, 'Calculation of pull-in voltages for carbon -nanotube-based nanoelectromechanical switches', Nanotechnology, Vol. 13, No.1, p. 120, 2002 https://doi.org/10.1088/0957-4484/13/1/325
  4. J. M. Kinaret, T. Nord, and S. Viefers, 'A carbon-nanotube-based nanorelay', Appl. Phys. Lett., Vol. 82, No. 8, p. 1287, 2003 https://doi.org/10.1063/1.1557324
  5. C. Ke and H. D. Espinosa, 'Feedback controlled nanocantilever device', Appl. Phys. Lett., Vol. 85, No. 4, p. 681, 2004 https://doi.org/10.1063/1.1767606
  6. L. M. Jonsson, T. Nord, J. M. Kinaret, and S. Viefers, 'Effects of surface forces and phonon dissipation in a three-terminal nanorelay', J. Appl. Phys., Vol. 96, No. 1, p. 629, 2004 https://doi.org/10.1063/1.1756689
  7. L. M. Jonsson, S. Axelsson, T. Nord, S. Viefers, and J. M. Kinaret, 'High frequency properties of a CNT-based nanorelay', Nanotechnology, Vol. 15, No. 11, p. 1497, 2004 https://doi.org/10.1088/0957-4484/15/11/022
  8. S. W. Lee, D. S. Lee, R. E. Morjan, S. H. Jhang, M. Sveningsson, O. A. Nerushev, Y. W. Park, and E. E. B. Campbell, 'A three-terminal carbon nanorelay', Nano Lett., Vol. 4, No. 10, p. 2027, 2004 https://doi.org/10.1021/nl049053v
  9. H. J. Hwang and J. W. Kang, 'Carbonnanotube-based nanoelectromechanical switch', Physica E, Vol. 27, Iss. 1-2, p. 163, 2005 https://doi.org/10.1016/j.physe.2004.11.004
  10. J. W. Ward, M. Meinhold, B. M. Segal, J. Berg, R. Sen, R. Sivarajan, D. K. Brock, and T. Rueckes, 'A non-volatile nanoelectromechanical memory element utilizing a fabric of carbon nanotubes', in proceedings of 2004 Non Volatile Memory Technology Symposium, Vol. 15, p. 34, 2004
  11. M. Dequesnes, Z. Tang, and N. R. Aluru, 'Static and dynamic analysis of carbon nanotube-based switches', J. Eng. Mater. Tech., Vol. 126, Iss. 3, p. 230, 2004 https://doi.org/10.1115/1.1751180
  12. C. Ke and H. D. Espinosa, 'Numerical analysis of nanotube-based NEMS devices. Part I: Electrostatic charge distribution on multi walled nanotubes ' , J. Appl. Mech., Vol. 72, Iss. 5, p. 721, 2005 https://doi.org/10.1115/1.1985434
  13. J. W. Kang, J. H. Lee, H. J. Lee, O. K. Kwon, and H. J. Hwang, 'Electromechanical modeling and simulations of nanobridge memory device', Physica E, Vol. 28, Iss. 3, p. 273, 2005 https://doi.org/10.1016/j.physe.2005.03.016
  14. S. Sapmaz, Y. M. Blanter, L. Gurevich, and H. S. J. van der Zant, 'Carbon nanotubes as nanoelectromechanical systems', Phys. Rev. B, Vol. 67, No. 23, p. 235414, 2003 https://doi.org/10.1103/PhysRevB.67.235414
  15. V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, 'A tunable carbon nanotube electromechanical oscillator', Nature, Vol. 431, No. 7006, p. 284, 2004
  16. H. Ustunel, D. Roundy, and T. A. Arias, 'Modeling a suspended nanotube oscillator', Nano Lett., Vol. 5, No. 3, p. 523, 2005 https://doi.org/10.1021/nl0481371
  17. S. V. Rotkin, V. Shrivastava, K. A. Bulashevich, and N. R. Aluru, 'Atomistic capacitance of a nanotube electromechanical device', Inter. J. Nanosci. Vol. 1, No. 3-4, p. 337, 2002
  18. A. Maiti and A. Ricca, 'Metal-nanotube interactions - binding energies and wetting properties', Chem. Phys. Lett., Vol. 395, Iss. 1-3, p. 7, 2004 https://doi.org/10.1016/j.cplett.2004.07.024
  19. W. H. Hayt, 'Engineering Electromagnetics, 5th edition', McGraw Hill International Editions, Singapore, p. 152, 1989
  20. J. Tersoff, 'Empirical interatomic potential silicon with improved elastic properties', Phys. Rev. B, Vol. 38, No. 14, p. 9902, 1988
  21. J. Tersoff, 'Modeling solid-state chemistry: interatomic potentials for multicomponent systems', Phys. Rev. B, Vol. 39, No. 8, p. 5566, 1989 https://doi.org/10.1103/PhysRevB.39.5566
  22. D. W. Brenner, 'Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films', Phys. Rev. B, Vol. 42, No. 15, p. 9458, 1990
  23. S. Arcidiacono, J. H. Walther, D. Poulikakos, D. Passerone, and P. Koumoutsakos, 'Solidification of gold nanoparticles in carbon nanotubes', Phys. Rev. Lett., Vol. 94, No. 10, p, 105502, 2005 https://doi.org/10.1103/PhysRevLett.94.105502
  24. P. M. Agrawal, B. M. Rice, and D. L. Thompson, 'Predicting trends in rate parameters for self-diffusion on FCC metal surfaces', Surf. Sci., Vol. 515, Iss. 1, p. 21, 2002 https://doi.org/10.1016/S0039-6028(02)01916-7
  25. J. W. Kang, K. R. Byun, and H. J. Hwang, ' Twist of hypothetical silicon nanotubes', Model. Simul. Mater. Sci. Eng., Vol. 12, No. 1, p. 1, 2004 https://doi.org/10.1088/0965-0393/12/1/001
  26. J. W. Kang and H. J. Hwang, 'Structural properties of caesium encapsulated in carbon nanotubes', Nanotechnology, Vol. 15, No.1, p. us, 2004 https://doi.org/10.1088/0957-4484/15/1/022
  27. J. W. Kang and H. J. Hwang, 'Fullerene nano ball bearings: an atomistic study', Nanotechnology, Vol. 15, No. 5, p. 614, 2004 https://doi.org/10.1088/0957-4484/15/5/036
  28. J. W. Kang and H. J. Hwang, ' The electroemission of endo-fullerenes from a nanotube', Nanotechnology, Vol. 15, No. 12, p. 1825, 2004 https://doi.org/10.1088/0957-4484/15/12/023
  29. J. W. Kang and H. J. Hwang, 'A bucky shuttle three-terminal switching device: classical molecular dynamics study', Physica E, Vol. 23, Iss. 1-2, p. 36, 2004 https://doi.org/10.1016/j.physe.2003.11.271
  30. J. W. Kang, J. H. Lee, H. J. Lee, and H. J. Hwang, 'A study on carbon nanotube bridge as a electromechanical memory device', Physica E, Vol. 27, Iss. 3, p. 332, 2005 https://doi.org/10.1016/j.physe.2004.12.009