Numerical Study on the Sensitivity of Meteorological Field Variation due to Radar Data Assimilation

레이더 자료동화에 따른 기상장모의 민감도에 관한 수치연구

  • Lee Soon-Hwan (Center for Asian Monsoon & Climate Environment Research, Chosun University) ;
  • Park Geun-Yeong (Department of Atmospheric Science, Chosun University) ;
  • Ryu Chan-Su (Center for Asian Monsoon & Climate Environment Research, Chosun University)
  • 이순환 (조선대학교 아시아몬순, 기후환경연구센터) ;
  • 박근영 (조선대학교 대기과학과) ;
  • 류찬수 (조선대학교 아시아몬순, 기후환경연구센터)
  • Published : 2006.01.01


The purpose of this research is development of radar data assimilation observed at Jindo S-band radar The accurate observational data assimilation system is one of the important factors to meteorological numerical prediction of the region scale. Diagnostic analysis system LAPS(Local Analysis and Prediction System) developed by US FSL(Forecast Systems Laboratory) is adopted assimilation system of the Honam district forecasting system. The LAPS system was adjusted in calculation environment in the Honam district. And the improvement in the predictability by the application of the LAPS system was confirmed by the experiment applied to Honam district local severe rain case of generating 22 July 2003. The results are as follows: 1) Precipitation amounts of Gwangju is strong associated with the strong in lower level from analysis of aerological data. This indicated the circulation field especially, 850hPa layer, acts important role to precipitation in Homan area. 2) Wind in coastal area tends to be stronger than inland area and radar data show the strong wind in conversions zone around front. 3) Radar data assimilation make the precipitation area be extended and maximum amount of precipitation be smaller. 4) In respect to contribution rate of different height wind field on precipitation variation, radar data assimilation of upper level is smaller than that of lower level.


  1. 공군기상전대, 2003, 도플러 기상레이더, 공군기상전대, 7-34
  2. 기상청, 2003, 레이더 영상 분석, 서울, 동진 문화사, 50-59
  3. 박순웅, 윤일희, 정순갑, 1986, 1978 년 하계장마시 장마전선과 관련되어 나타난 열과 수증기의 원에 관하여, 한국기상학회지, 22(2), 2001-2028
  4. 홍성유, 1992, 한반도에서 발생한 집중호우의 수치 모의실험, 서울대학교 대학원 박사학위 논문, 246pp
  5. Dudhia, J., 1989, Numerical study of con­vection observed during the winter monsoon experiment using a mesoscale two-dimen sional model, J. Atmos. Sci., 46, 3077-3107<3077:NSOCOD>2.0.CO;2
  6. Chen, F. and J. Dudhia, 2001, Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part II: Preliminary Model validation, Mon. Wea. Rev., 129, 587-604<0587:CAALSH>2.0.CO;2
  7. 엄원근, 1995, 레이더 기상학, 서울, 영재사, 67-­107
  8. Albers, S. C., J. A. McGinley, D. L. Birkenheour and J. R. Smar, 1996, The Local Analysis and Prediction System(LAPS); Analysis of clouds, precipitation and temperature, Wea. Forecasting, 11, 273-287<0273:TLAAPS>2.0.CO;2
  9. Birkenheuer, D. L., 1992, The LAPS specific humidity analysis, NOAA Tech. Memo, ERL­FSL-1, NOAA Forecast Systems Laboratory, Boulder, CO, 39pp
  10. 김용상, 박옥란, 황승언, 2002, 기상연구소의 국지규모기상분석 및 예측시스템(KLAPS)의 실시간운영, 한국기상학회지, 38(1), 1-10
  11. Barnes, S. L., 1964, A technique for max­imizing details in numerical weather map analysis, J. Appli. Meteor., 3, 369-409
  12. 과학기술처, 1997, 기상자료 종합분석 시스템 개발, 과학기술처 293pp
  13. Dudhia, J., 1993, A nonhydrostatic version of the Penn State/NCAR mesoscale model: vali­dation test and simulation of Atlantic cyclone and cold front, Mon. Wea. Rev., 121, 1493-1513<1493:ANVOTP>2.0.CO;2
  14. 류찬수, 신유미, 이순환, 2004, 해안지형 복잡성이 중규모 순환장에 미치는 영향에 관한 수치실험, 한국기상학회지, 40(1), 71-86
  15. Kimura, F. and Arakawa, 1983, A numerical experiment of the nocturnal low level jet over Kanto plain, J. Meteoro. Soc. Japan, 61, 848­-861
  16. Grell, G., Y. H. Kuo and R. J. Pasch, 1991, Semi -prognostic tests of cumulus parameter ization schemes in the middle latitudes, Mon. Wea. Rev., 119, 5-31<0005:STOCPS>2.0.CO;2

Cited by

  1. A Study on the Change of Heavy Snow Strength by SST in Influence of Continental Polar Air Mass vol.7, pp.1, 2014,