Identification of a Peptide Enhancing Mucosal and SystemicImmune Responses against EGFP after Oral Administration in Mice

  • Kim, Sae-Hae (Devision of Biological Sciences and Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Lee, Kyung-Yeol (Department of Microbiology and Institute of Oral Bioscience, Chonbuk National University) ;
  • Kim, Ju (Devision of Biological Sciences and Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Park, Seung-Moon (Institute of Basic Science, Chonbuk National University) ;
  • Park, Bong Kyun (Department of Veterinary Virology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University) ;
  • Jang, Yong-Suk (Devision of Biological Sciences and Institute for Molecular Biology and Genetics, Chonbuk National University)
  • Received : 2005.12.12
  • Accepted : 2006.01.11
  • Published : 2006.04.30


Gangliosides are receptors for various peptides and proteins including neuropeptides, ${\beta}$-amyloid proteins, and prions. Recently, the role of gangliosides in mucosal immunization has attracted attention due to the emerging interest in oral vaccination. Ganglioside GM1 exists in abundance on the surface of the M cells of Peyer's patch, a well-known mucosal immunity induction site. In the present study we identified a peptide ligand for GM1 and tested whether it played a role in immune induction. GM1-binding peptides were selected from a phage-displayed dodecapeptide library and one peptide motif, GWKERLSSWNRF, was fused to the C-terminus of enhanced green fluorescent protein (EGFP). The fusion protein, but not EGFP fused with a control peptide, was concentrated around Peyer's patch after incubation in the lumen of the intestine ex vivo. Furthermore, oral feeding of the fusion protein but not control EGFP induced mucosal and systemic immune responses against EGFP resembling Th2-type immune responses.


Adjuvant;Ganglioside;Mucosal Immunization;Phage Display Library


Supported by : Korean Research Foundation, PF0330301-00


  1. Bae, J. L., Lee, J. G., Kang, T. J., Jang, H. S., Jang, Y. S., et al. (2003) Induction of antigen-specific systemic and mucosal immune responses by feeding animals transgenic plants expressing the antigen. Vaccine 21, 4052-4058
  2. Hino, A., Fukuyama, S., Kataoka, K., Kweon, M.-N., Fujihashi, K., et al. (2005) Nasal IL-12p70 DNA prevents and treats intestinal allergic diarrhea. J. Immunol. 174, 7423-7432
  3. Kang, T. J., Han, S. C., Jang, M. O., Kang, K. H., Jang, Y. S., et al. (2004) Enhanced expression of B-subunit of Escherichia coli heat-labile enterotoxin in tobacco by optimization of coding sequence. Appl. Biochem. Biotechnol. 117, 175-187
  4. Mattei, V., Garofalo, T., Misasi, R., Circella, A., Manganelli, V., et al. (2004) Prion protein is a component of the multimolecular signaling complex involved in T cell activation. FEBS Lett. 560, 14-18
  5. Merritt, E. A., Sarfaty, S., van den Akker, F., L'Hoir, C., Martial, J. A., et al. (1994) Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci. 3, 166-175
  6. Newton, S. M., Jacob, C. O., and Stocker, B. A. (1989) Immune response to cholera toxin epitope inserted in Salmonella flagellin. Science 244, 70-72
  7. Sakaue, G., Hiroi, T., Nakagawa, Y., Someya, K., Iwatani, K., et al. (2003) HIV mucosal vaccine: nasal immunization with gp160-encapsulated hemagglutinating virus of Japan-liposome induces antigen-specific CTLs and neutralizing antibody responses. J. Immunol. 170, 495-502
  8. van Ginkel, F. W., Jackson, R. J., Yuki, Y., and McGhee, J. R. (2000) Cutting edge: The mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J. Immunol. 165, 4778-4782
  9. Kawamura, Y. I., Kawashima, R., Shirai, Y., Kato, R., Hamabata, T., et al. (2003) Cholera toxin activates dendritic cells through dependence on GM1-ganglioside which is mediated by NF-kappaB translocation. Eur. J. Immunol. 33, 3205-3212
  10. Gardby, E., Wrammert, J., Schon, K., Ekman, L., Leanderson, T., et al. (2003) Strong differential regulation of serum and mucosal IgA responses as revealed in CD28-deficient mice using cholera toxin adjuvant. J. Immunol. 170, 55-63
  11. Neutra, M. R., Frey, A., and Kraehenbuhl, J. P. (1996) Epithelial M cells: gateways for mucosal infection and immunization. Cell 86, 345-348
  12. Okahashi, N., Yamamoto, M., Vancott, J. L., Chatfield, S. N., Roberts, M., et al. (1996) Oral immunization of interleukin-4 (IL-4) knockout mice with a recombinant Salmonella strain or cholera toxin reveals that CD4+ Th2 cells producing IL-6 and IL-10 are associated with mucosal immunoglobulin A responses. Infect. Immun. 64, 1516-1525
  13. Kato, H., Fujihashi, K., Kato, R., Dohi, T., Fujihashi, K., et al. (2003) Lack of oral tolerance in aging is due to sequential loss of Peyer's patch cell interactions. Int. Immunol. 15, 145-158
  14. Parronchi, P., De Carli, M., Manetti, R., Simonelli, C., Sampognaro, S., et al. (1992) IL-4 and IFN (alpha and gamma) exert opposite regulatory effects on the development of cutolytic potential by Th1 or Th2 human T cell clones. J. Immunol. 149, 2977-2983
  15. Verlinde, C. L., Merritt, E. A., Van den Akker, F., Kim, H., Feil, I., et al. (1994) Protein crystallography and infectious disease. Protein Sci. 3, 1670-1686
  16. Bergelson, L. D., Bukrinskaya, A. G., Prokazova, N. V., Shaposhnikova, G. I., Kocharov, S. L., et al. (1982) Role of gangliosides in reception of influenza virus. Eur. J. Biochem. 128, 467-474
  17. Valdes-Gonzalez, T., Inagawa, J., and Ido, T. (2001) Neuropeptides interact with glycolipid receptors: a surface plasmon resonance study. Peptides 22, 1099−1106.
  18. Shin, S. J., Bae, J. L., Cho, Y. W., Lee, D. Y., Kim, D. H., et al. (2005) Induction of antigen-specific immune responses by oral vaccination with Saccharomyces cerevisiae expressing Actinobacillus pleuropneumoniae ApxIIA. FEMS Immunol. Med. Microbiol. 43, 155-164
  19. Daniels, R. S., Kang, C., Patel, D., Xiang, Z., Douglas, N. W., et al. (2003) An HIV type 1 subtype B founder effect in Korea: gp160 signature patterns infer circulation of CTL-escape strains at the population level. AIDS Res. Hum. Retroviruses 19, 631-641
  20. Fujihashi, K., Koga, T., van Ginkel, F. E., Hagiwara, Y., and McGhee, J. R. (2002) A dilemma for mucosal vaccination: efficacy versus toxicity using enterotoxin-based adjuvants. Vaccine 20, 2431-2438
  21. Markwell, M. A., Svennerholm, L., and Paulson, J. C. (1981) Specific gangliosides function as host cell receptors for Sendai virus. Proc. Natl. Acad. Sci. USA 78, 5406-5410
  22. Miura, Y., Sasao, Y., Kamihira, M., Sakaki, A., Iijima, S., et al. (2004) Peptides binding to a Gb3 mimic selected from a phage library. Biochim. Biophys. Acta 1673, 131-138
  23. Matsubara, T., Ishikawa, D., Taki, T., Okahata, Y., and Sato, T. (1999) Selection of ganglioside GM1-binding peptides by using a phage library. FEBS Lett. 456, 253-256
  24. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254
  25. Fujihashi, K., Dohi, T., Rennert, P. D., Yamamoto, M., Koga, T., et al. (2001) Peyer's patches are required for oral tolerance to proteins. Proc. Natl. Acad. Sci. USA 98, 3310-3315
  26. Jang, M. H., Kweon, M. N., Iwatani, K., Yamamoto, M., Terahara, K., et al. (2004) Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl. Acad. Sci. USA 101, 6110-6115
  27. Kurganov, B., Doh, M., and Arispe, N. (2004) Aggregation of liposomes induced by the toxic peptides Alzheimer's Abetas, human amylin and prion (106-126): facilitation by membrane- bound GM1 ganglioside. Peptides 25, 217-232
  28. Spellberg, B. and Edwards, J. E. (2001) Type 1/type 2 immunity in infectious diseases. Clin. Infect. Dis. 32, 76-102. Valdes-Gonzalez, T., Inagawa, J., and Ido, T. (2001) Neuropeptides interact with glycolipid receptors: a surface plasmon resonance study. Peptides 22, 1099-1106
  29. Wu, H., Goud, G. N., and Sierks, M. R. (1998) Artificial antibodies for affinity chromatography of homologous proteins: application to blood clotting proteins. Biotechnol. Prog. 14, 496-499
  30. de, Haan, L., Verweij, W. R., Feil, I. K., Holtrop, M., Hol, W. G., et al. (1998) Role of GM1 binding in the mucosal immunogenicity and adjuvant activity of the Escherichia coli heatlabile enterotoxin and its B subunit. Immunology 94, 424-430
  31. Foster, N., Clark, M. A., Jepson, M. A., and Hirst, B. H. (1998) Ulex europaeus 1 lectin targets microspheres to mouse Peyer's patch M-cells in vivo. Vaccine 16, 536-541
  32. Ogushi, K., Wada, A., Niidome, T., Okuda, T., Llanes, R., et al. (2004) Gangliosides act as co-receptors for Salmonella enteritidis FliC and promote FliC induction of human betadefensin- 2 expression in Caco-2 cells. J. Biol. Chem. 279, 12213-12219
  33. Wu, C., Zeng, Z., and Wang, Q. (2001) Experimental study of inhibition of hepatitis B by dual-target antisense RNA. Zhonghua Yi Xue Za Zhi. 81, 605-608
  34. Carter, L. L. and Dutton, R. W. (1996) Type 1 and type 2: a fundamental dichotomy for all T cell subsets. Curr. Opin. Immunol. 8, 336-342
  35. Cuadros, C., Lopez-Hernandez, F. J., Dominguez, A. L., McClelland, M., and Lustgarten, J. (2004) Flagellin fusion proteins as adjuvants or vaccines induce specific immune responses. Infect. Immun. 72, 2810-2816
  36. Fishman, P. H. (1982) Role of membrane gangliosides in the binding and action of bacterial toxins. J. Membr. Biol. 69, 85-97
  37. Yamamoto, M., Rennert, P., McGhee, J. R., Kweon, M. N., Yamamoto, S., et al. (2000) Alternate mucosal immune system: organized Peyer's patches are not required for IgA responses in the gastrointestinal tract. J. Immunol. 164, 5184-5191
  38. Son, Y. O., Lee, K. Y., Choi, K. C., Chung, Y., Kim, J. G., et al. (2004) Inhibitory effects of glycoprotein-120 (G-120) from Ulmus davidiana Nakai on cell growth and activation of matrix metalloproteinases. Mol. Cells 18, 163-170
  39. Kim, A., Noh, Y. W., Kim, K. D., Jang, Y. S., Choe, Y. K., et al. (2004) Activated natural killer cell-mediated immunity is required for the inhibition of tumor metastasis by dendritic cell vaccination. Exp. Mol. Med. 36, 428-443