Effect of Surface Roughness on the Actuation of Ionic Polymer Metal Composites

표면 조도에 따른 이온성 고분자-금속 복합체의 구동특성

  • Jung, Sunghee (Korea Orthophedics & Rehabilitation Engineering Center (KOREC)) ;
  • Song, Jeomsik (Korea Orthophedics & Rehabilitation Engineering Center (KOREC)) ;
  • Kim, Guoosuk (Korea Orthophedics & Rehabilitation Engineering Center (KOREC)) ;
  • Lee, Sukmin (Korea Orthophedics & Rehabilitation Engineering Center (KOREC)) ;
  • Mun, Museong (Korea Orthophedics & Rehabilitation Engineering Center (KOREC))
  • 정성희 (재활공학연구소) ;
  • 송점식 (재활공학연구소) ;
  • 김규석 (재활공학연구소) ;
  • 이석민 (재활공학연구소) ;
  • 문무성 (재활공학연구소)
  • Received : 2006.04.14
  • Accepted : 2006.09.21
  • Published : 2006.12.10

Abstract

As one of electro active polymers for soft smart materials, the ionic polymer metal composites (IPMC) are easy to produce through chemical reduction processing and show high displacements at low voltage. When the IPMC actuates, the deformation depends on a few factors including the structure of based membrane, species and morphology of the metal electrodes, the nature of cations and the level of hydration. As previously published, we have been studying on improvement of actuation through surface electrode modification of IPMC to grasp the effect of electrode morphology on actuation. This study is comparative experiments through the chemical reaction and deposition by ion beam assisted deposition (IBAD) in order to prepare the very thin and homogeneous surface electrode of IPMC. The IPMCs were prepared with different surface roughness of polymer membrane, and the influence of the surface roughness on the actuation was studied. By investigating the electrical properties and driving displacement, the actuating properties of IPMC with different surface roughness were studied.

Keywords

IPMC;artificial muscle;electro-mechanical actuator;IBAD

Acknowledgement

Supported by : 보건복지부

References

  1. S. Nemat-Nasser, J. Appli. Phys., 92, 1 (2001)
  2. M. Uchida, C. Xu, M. Le Guilly, and M. Taya, Smart Mater. Struct. Proc. SPIE 4695, 57 (2002)
  3. S. Nemat-Nasser and Y. Wu, J. Appli. Phys., 93, 5255 (2003) https://doi.org/10.1063/1.1563300
  4. S. E. Cha, J. H. Pak, and S. K. Lee, Trans. KIEE., 51C, 9, 455, (2002)
  5. M. Shahinpoor and K. J. Kim, Sens. Actuators, A, 96, 125 (2002) https://doi.org/10.1016/S0924-4247(01)00777-4
  6. M. D. Bennett and D. J. Leo, Proc. IMECE 2003-43551, 1 (2003)
  7. K. Oguro, S. Sewa, K. Asaka, N. Fujiwara, and K. Onishi, Electrochim. Acta, 46, 737 (2000) https://doi.org/10.1016/S0013-4686(00)00656-3
  8. S. Her, K. J. Kim, and J. W. Paquette, J. Control, Automation, Systems Eng., 10, 11, 981 (2004) https://doi.org/10.5302/J.ICROS.2004.10.11.981
  9. M. Shahinpoor and K. J. Kim, Smart Mater. Struct., 9, 543 (2000) https://doi.org/10.1088/0964-1726/9/4/318
  10. K. Onishi, S. Sewa, K. Asaka, N. Fujiwara, and K. Oguro, Electrochim. Acta, 46, 1233 (2001) https://doi.org/10.1016/S0013-4686(00)00695-2
  11. M. Shahinpoor and K. J. Kim, Smart Mater. Struct., 10, 819 (2001) https://doi.org/10.1088/0964-1726/10/4/327
  12. S.H. Jung, M. J. Lee, J. S. Song, S. Lee, and M. S. Mun, J. Korean Ind. Eng. Chem., 16, 527 (2005)