The Modulation of Inflammatory Gene Expression by Lipids: Mediation through Toll-like Receptors

  • Lee, Joo Y. (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Hwang, Daniel H. (USDA, ARS, Western Human Nutrition Research Center, and Department of Nutrition, University of California)
  • Received : 2006.03.29
  • Accepted : 2006.03.31
  • Published : 2006.04.30

Abstract

Toll-like receptors (TLRs) were evolved to detect invading pathogens and to induce innate immune responses in order to mount host defense mechanisms. It becomes apparent that the activation of certain TLRs is also modulated by endogenous molecules including lipid components, fatty acids. Results from epidemiological and animal studies demonstrated that saturated and polyunsaturated dietary fatty acids can differentially modify the risk of development of many chronic diseases. Inflammation is now recognized as an important underlying etiologic condition for the pathogenesis of many chronic diseases. Therefore, if the activation of TLRs and consequent inflammatory and immune responses are differentially modulated by types of lipids in vivo, this would suggest that the risk of the development of chronic inflammatory diseases and the host defense against microbial infection may be modified by the types of dietary fat consumed.

Keywords

Fatty Acids;Inflammation;Lipids;Toll-like Receptors

References

  1. Bin, L. H., Xu, L. G., and Shu, H. B. (2003) TIRP, a novel Toll/interleukin-1 receptor (TIR) domain-containing adapter protein involved in TIR signaling. J. Biol. Chem. 278, 24526-24532 https://doi.org/10.1074/jbc.M303451200
  2. Bochkov, V. N., Kadl, A., Huber, J., Gruber, F., Binder, B. R., et al. (2002) Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature 419, 77-81 https://doi.org/10.1038/nature01023
  3. Brentano, F., Schorr, O., Gay, R. E., Gay, S., and Kyburz, D. (2005) RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3. Arthritis. Rheum. 52, 2656-2665 https://doi.org/10.1002/art.21273
  4. Covert, M. W., Leung, T. H., Gaston, J. E., and Baltimore, D. (2005) Achieving stability of lipopolysaccharide-induced NF-kappaB activation. Science 309, 1854-1857 https://doi.org/10.1126/science.1112304
  5. Deng, G. M., Nilsson, I. M., Verdrengh, M., Collins, L. V., and Tarkowski, A. (1999) Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat. Med. 5, 702-705 https://doi.org/10.1038/9554
  6. Endres, S., Ghorbani, R., Kelley, V. E., Georgilis, K., Lonnemann, G., et al. (1989) The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin- 1 and tumor necrosis factor by mononuclear cells. N. Engl. J. Med. 320, 265-271 https://doi.org/10.1056/NEJM198902023200501
  7. Endres, S., Meydani, S. N., Ghorbani, R., Schindler, R., and Dinarello, C. A. (1993) Dietary supplementation with n-3 fatty acids suppresses interleukin-2 production and mononuclear cell proliferation. J. Leukoc. Biol. 54, 599-603 https://doi.org/10.1002/jlb.54.6.599
  8. Fitzgerald, K. A., Palsson-McDermott, E. M., Bowie, A. G., Jefferies, C. A., Mansell, A. S., et al. (2001) Mal (MyD88- adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413, 78-83 https://doi.org/10.1038/35092578
  9. Gao, B. and Tsan, M. F. (2003) Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J. Biol. Chem. 278, 174-179 https://doi.org/10.1074/jbc.M208742200
  10. Hashimoto, M., Asai, Y., and Ogawa, T. (2003) Treponemal phospholipids inhibit innate immune responses induced by pathogen-associated molecular patterns. J. Biol. Chem. 278, 44205-44213 https://doi.org/10.1074/jbc.M306735200
  11. Haziot, A., Chen, S., Ferrero, E., Low, M. G., Silber, R., et al. (1988) The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphati-dylinositol linkage. J. Immunol. 141, 547-552
  12. Horng, T., Barton, G. M., Flavell, R. A., and Medzhitov, R. (2002) The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420, 329-333 https://doi.org/10.1038/nature01180
  13. Hwang, D. (2000) Fatty acids and immune responses--a new perspective in searching for clues to mechanism. Annu. Rev. Nutr. 20, 431-456 https://doi.org/10.1146/annurev.nutr.20.1.431
  14. Juge-Aubry, C., Pernin, A., Favez, T., Burger, A. G., Wahli, W., et al. (1997) DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5′- flanking region. J. Biol. Chem. 272, 25252-25259 https://doi.org/10.1074/jbc.272.40.25252
  15. Kaisho, T., Takeuchi, O., Kawai, T., Hoshino, K., and Akira, S. (2001) Endotoxin-induced maturation of MyD88-deficient dendritic cells. J. Immunol. 166, 5688-5694 https://doi.org/10.4049/jimmunol.166.9.5688
  16. Kitchens, R. L., Ulevitch, R. J., and Munford, R. S. (1992) Lipopolysaccharide (LPS) partial structures inhibit responses to LPS in a human macrophage cell line without inhibiting LPS uptake by a CD14- mediated pathway. J. Exp. Med. 176, 485-494 https://doi.org/10.1084/jem.176.2.485
  17. Kolek, M. J., Carlquist, J. F., Muhlestein, J. B., Whiting, B. M., Horne, B. D., et al. (2004) Toll-like receptor 4 gene Asp299Gly polymorphism is associated with reductions in vascular inflammation, angiographic coronary artery disease, and clinical diabetes. Am. Heart J. 148, 1034-1040 https://doi.org/10.1016/j.ahj.2004.05.049
  18. Lee, J. Y., Zhao, L., Youn, H. S., Weatherill, A. R., Tapping, R., et al. (2004) Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J. Biol. Chem. 279, 16971-16979 https://doi.org/10.1074/jbc.M312990200
  19. Leemans, J. C., Stokman, G., Claessen, N., Rouschop, K. M., Teske, G. J., et al. (2005) Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J. Clin. Invest. 115, 2894-2903 https://doi.org/10.1172/JCI22832
  20. Mandell, L., Moran, A. P., Cocchiarella, A., Houghton, J., Taylor, N., et al. (2004) Intact gram-negative Helicobacter pylori, Helicobacter felis, and Helicobacter hepaticus bacteria activate innate immunity via toll-like receptor 2 but not toll-like receptor 4. Infect. Immun. 72, 6446-6454 https://doi.org/10.1128/IAI.72.11.6446-6454.2004
  21. Medzhitov, R. and Janeway, C., Jr. (2000) The Toll receptor family and microbial recognition. Trends Microbiol. 8, 452-456 https://doi.org/10.1016/S0966-842X(00)01845-X
  22. Miller, Y. I., Viriyakosol, S., Worrall, D. S., Boullier, A., Butler, S., et al. (2005) Toll-like receptor 4-dependent and - independent cytokine secretion induced by minimally oxidized low-density lipoprotein in macrophages. Arterioscler. Thromb. Vasc. Biol. 25, 1213-1219 https://doi.org/10.1161/01.ATV.0000159891.73193.31
  23. Mullick, A. E., Tobias, P. S., and Curtiss, L. K. (2005) Modulation of atherosclerosis in mice by Toll-like receptor 2. J. Clin. Invest. 115, 3149-3156. Munford, R. S. and Hall, C. L. (1986) Detoxification of bacterial lipopolysaccharides (endotoxins) by a human neutrophil enzyme. Science 234, 203-205
  24. Munford, R. S. and Hall, C. L. (1986) Detoxification of bacterial lipopolysaccharides (endotoxins) by a human neutrophil enzyme. Science 234, 203−205. https://doi.org/10.1126/science.3529396
  25. Ninomiya-Tsuji, J., Kishimoto, K., Hiyama, A., Inoue, J., Cao, Z., et al. (1999) The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252-256 https://doi.org/10.1038/18465
  26. Oyama, J., Blais, C., Jr., Liu, X., Pu, M., Kobzik, L., et al. (2004) Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation 109, 784-789 https://doi.org/10.1161/01.CIR.0000112575.66565.84
  27. Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., et al. (1998) Defective LPS signaling in C3H/HeJ and C57BL/ 10ScCr mice: mutations in Tlr4 gene. Science 282, 2085-2088 https://doi.org/10.1126/science.282.5396.2085
  28. Seki, E., Tsutsui, H., Nakano, H., Tsuji, N., Hoshino, K., et al. (2001) Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1beta. J. Immunol. 166, 2651-2657 https://doi.org/10.4049/jimmunol.166.4.2651
  29. Subbanagounder, G., Wong, J. W., Lee, H., Faull, K. F., Miller, E., et al. (2002) Epoxyisoprostane and epoxycyclopentenone phospholipids regulate monocyte chemotactic protein-1 and interleukin-8 synthesis. Formation of these oxidized phospholipids in response to interleukin-1beta. J. Biol. Chem. 277, 7271-7281 https://doi.org/10.1074/jbc.M107602200
  30. Suzuki, N., Suzuki, S., Duncan, G. S., Millar, D. G., Wada, T., et al. (2002) Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416, 750-756 https://doi.org/10.1038/nature736
  31. Takeuchi, O., Kawai, T., Muhlradt, P. F., Morr, M., Radolf, J. D., et al. (2001) Discrimination of bacterial lipoproteins by Tolllike receptor 6. Int. Immunol. 13, 933-940 https://doi.org/10.1093/intimm/13.7.933
  32. Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., et al. (2002) Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10-14 https://doi.org/10.4049/jimmunol.169.1.10
  33. Vabulas, R. M., Ahmad-Nejad, P., da Costa, C., Miethke, T., Kirschning, C. J., et al. (2001) Endocytosed HSP60s use tolllike receptor 2 (TLR2) and TLR4 to activate the toll/interleukin- 1 receptor signaling pathway in innate immune cells. J. Biol. Chem. 276, 31332-31339 https://doi.org/10.1074/jbc.M103217200
  34. Zhang, H., Tay, P. N., Cao, W., Li, W., and Lu, J. (2002) Integrin-nucleated Toll-like receptor (TLR) dimerization reveals subcellular targeting of TLRs and distinct mechanisms of TLR4 activation and signaling. FEBS Lett. 532, 171-176 https://doi.org/10.1016/S0014-5793(02)03669-4
  35. Wang, P. Y., Kitchens, R. L., and Munford, R. S. (1998) Phosphatidylinositides bind to plasma membrane CD14 and can prevent monocyte activation by bacterial lipopolysaccharide. J. Biol. Chem. 273, 24309-24313 https://doi.org/10.1074/jbc.273.38.24309
  36. da Silva Correia, J., Soldau, K., Christen, U., Tobias, P. S., and Ulevitch, R. J. (2001) Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2. J. Biol. Chem. 276, 21129-21135 https://doi.org/10.1074/jbc.M009164200
  37. Forman, B. M., Chen, J., and Evans, R. M. (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc. Natl. Acad. Sci. USA 94, 4312-4317
  38. Torok, H. P., Glas, J., Tonenchi, L., Mussack, T., and Folwaczny, C. (2004) Polymorphisms of the lipopolysaccharide-signaling complex in inflammatory bowel disease: association of a mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin. Immunol. 112, 85-91 https://doi.org/10.1016/j.clim.2004.03.002
  39. Clarke, S. D., Gasperikova, D., Nelson, C., Lapillonne, A., and Heird, W. C. (2002) Fatty acid regulation of gene expression: a genomic explanation for the benefits of the mediterranean diet. Ann. NY Acad. Sci. 967, 283-298 https://doi.org/10.1111/j.1749-6632.2002.tb04284.x
  40. Gobert, A. P., Bambou, J. C., Werts, C., Balloy, V., Chignard, M., et al. (2004) Helicobacter pylori heat shock protein 60 mediates interleukin-6 production by macrophages via a toll-like receptor (TLR)-2-, TLR-4-, and myeloid differentiation factor 88-independent mechanism. J. Biol. Chem. 279, 245-250 https://doi.org/10.1074/jbc.M307858200
  41. Oshiumi, H., Sasai, M., Shida, K., Fujita, T., Matsumoto, M., et al. (2003b) TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to toll-like receptor 4 TICAM-1 that induces interferon-beta. J. Biol. Chem. 278, 49751-49762 https://doi.org/10.1074/jbc.M305820200
  42. Serhan, C. N., Hong, S., Gronert, K., Colgan, S. P., Devchand, P. R., et al. (2002) Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196, 1025-1037 https://doi.org/10.1084/jem.20020760
  43. Bonazzi, A., Mastyugin, V., Mieyal, P. A., Dunn, M. W., and Laniado-Schwartzman, M. (2000) Regulation of cyclooxygenase- 2 by hypoxia and peroxisome proliferators in the corneal epithelium. J. Biol. Chem. 275, 2837-2844 https://doi.org/10.1074/jbc.275.4.2837
  44. Jiang, Z., Mak, T. W., Sen, G., and Li, X. (2004) Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFNbeta. Proc. Natl. Acad. Sci. USA 101, 3533-3538
  45. Kliewer, S. A., Umesono, K., Noonan, D. J., Heyman, R. A., and Evans, R. M. (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358, 771-774 https://doi.org/10.1038/358771a0
  46. Lee, J. Y., Sohn, K. H., Rhee, S. H., and Hwang, D. (2001) Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J. Biol. Chem., 276, 16683-16689 https://doi.org/10.1074/jbc.M011695200
  47. Pfeiffer, A., Bottcher, A., Orso, E., Kapinsky, M., Nagy, P., et al. (2001) Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur. J. Immunol. 31, 3153-3164 https://doi.org/10.1002/1521-4141(200111)31:11<3153::AID-IMMU3153>3.0.CO;2-0
  48. Zheng, S. L., Augustsson-Balter, K., Chang, B., Hedelin, M., Li, L., et al. (2004) Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: results from the cancer prostate in Sweden study. Cancer Res. 64, 2918-2922 https://doi.org/10.1158/0008-5472.CAN-03-3280
  49. Lee, J. Y., Ye, J., Gao, Z., Youn, H. S., Lee, W. H., et al. (2003a) Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. J. Biol. Chem. 278, 37041-37051 https://doi.org/10.1074/jbc.M305213200
  50. Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., et al. (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2, 253-258 https://doi.org/10.1016/S1097-2765(00)80136-7
  51. Zare, F., Bokarewa, M., Nenonen, N., Bergstrom, T., Alexopoulou, L., et al. (2004) Arthritogenic properties of doublestranded (viral) RNA. J. Immunol. 172, 5656-5663 https://doi.org/10.4049/jimmunol.172.9.5656
  52. Chawla, A., Repa, J. J., Evans, R. M., and Mangelsdorf, D. J. (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294, 1866-1870 https://doi.org/10.1126/science.294.5548.1866
  53. Shi, W., Haberland, M. E., Jien, M. L., Shih, D. M., and Lusis, A. J. (2000) Endothelial responses to oxidized lipoproteins determine genetic susceptibility to atherosclerosis in mice. Circulation 102, 75-81 https://doi.org/10.1161/01.CIR.102.1.75
  54. Yeh, M., Leitinger, N., de Martin, R., Onai, N., Matsushima, K., et al. (2001) Increased transcription of IL-8 in endothelial cells is differentially regulated by TNF-alpha and oxidized phospholipids. Arterioscler. Thromb. Vasc. Biol. 21, 1585-1591 https://doi.org/10.1161/hq1001.097027
  55. Muzio, M., Natoli, G., Saccani, S., Levrero, M., and Mantovani, A. (1998) The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J. Exp. Med. 187, 2097-2101 https://doi.org/10.1084/jem.187.12.2097
  56. Ozinsky, A., Underhill, D. M., Fontenot, J. D., Hajjar, A. M., Smith, K. D., et al. (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. USA 97, 13766- 13771
  57. Asea, A., Rehli, M., Kabingu, E., Boch, J. A., Bare, O., et al. (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 277, 15028-15034 https://doi.org/10.1074/jbc.M200497200
  58. Fitzgerald, K. A., Rowe, D. C., Barnes, B. J., Caffrey, D. R., Visintin, A., et al. (2003b) LPS-TLR4 Signaling to IRF-3/7 and NF-${\kappa}$B Involves the Toll Adapters TRAM and TRIF. J. Exp. Med. 198, 1043-1055 https://doi.org/10.1084/jem.20031023
  59. Krey, G., Braissant, O., L'Horset, F., Kalkhoven, E., Perroud, M., et al. (1997) Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferatoractivated receptors by coactivator-dependent receptor ligand assay. Mol. Endocrinol. 11, 779-791 https://doi.org/10.1210/me.11.6.779
  60. Okamura, Y., Watari, M., Jerud, E. S., Young, D. W., Ishizaka, S. T., et al. (2001) The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem. 276, 10229-10233 https://doi.org/10.1074/jbc.M100099200
  61. Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J., and Mathison, J. C. (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431-1433 https://doi.org/10.1126/science.1698311
  62. Byrd-Leifer, C. A., Block, E. F., Takeda, K., Akira, S., and Ding, A. (2001) The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. Eur. J. Immunol. 31, 2448-2457 https://doi.org/10.1002/1521-4141(200108)31:8<2448::AID-IMMU2448>3.0.CO;2-N
  63. Chen, Y. C., Giovannucci, E., Lazarus, R., Kraft, P., Ketkar, S., et al. (2005) Sequence variants of Toll-like receptor 4 and susceptibility to prostate cancer. Cancer Res. 65, 11771-11778 https://doi.org/10.1158/0008-5472.CAN-05-2078
  64. Krauss, J. H., Seydel, U., Weckesser, J., and Mayer, H. (1989) Structural analysis of the nontoxic lipid A of Rhodobacter capsulatus 37b4. Eur. J. Biochem. 180, 519-526 https://doi.org/10.1111/j.1432-1033.1989.tb14677.x
  65. Medzhitov, R. and Janeway, C. A., Jr. (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295-298 https://doi.org/10.1016/S0092-8674(00)80412-2
  66. Eligini, S., Colli, S., Basso, F., Sironi, L., and Tremoli, E. (1999) Oxidized low density lipoprotein suppresses expression of inducible cyclooxygenase in human macrophages. Arterioscler. Thromb. Vasc. Biol. 19, 1719-1725 https://doi.org/10.1161/01.ATV.19.7.1719
  67. Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., et al. (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777-1782 https://doi.org/10.1084/jem.189.11.1777
  68. Daemen, T., Regts, J., and Scherphof, G. L. (1996) Liposomal phosphatidylserine inhibits tumor cytotoxicity of liver macrophages induced by muramyl dipeptide and lipopolysaccharide. Biochim. Biophys. Acta 1285, 219-228 https://doi.org/10.1016/S0005-2736(96)00164-2
  69. Kawai, T., Adachi, O., Ogawa, T., Takeda, K., and Akira, S. (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115-122 https://doi.org/10.1016/S1074-7613(00)80086-2
  70. Liu, Z. Q., Deng, G. M., Foster, S., and Tarkowski, A. (2001) Staphylococcal peptidoglycans induce arthritis. Arthritis. Res. 3, 375-380 https://doi.org/10.1186/ar330
  71. Toshchakov, V., Jones, B. W., Perera, P. Y., Thomas, K., Cody, M. J., et al. (2002) TLR4, but not TLR2, mediates IFN-betainduced STAT1alpha/beta-dependent gene expression in macrophages. Nat. Immunol. 3, 392-398 https://doi.org/10.1038/ni774
  72. Yamamoto, M., Sato, S., Mori, K., Hoshino, K., Takeuchi, O., et al. (2002) Cutting edge: a novel Toll/IL-1 receptor domaincontaining adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668-6672 https://doi.org/10.4049/jimmunol.169.12.6668
  73. Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., et al. (2003a) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640-643. https://doi.org/10.1126/science.1087262
  74. Leitinger, N., Tyner, T. R., Oslund, L., Rizza, C., Subbanagounder, G., et al. (1999) Structurally similar oxidized phospholipids differentially regulate endothelial binding of monocytes and neutrophils. Proc. Natl. Acad. Sci. USA 96, 12010-12015
  75. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T., and Seya, T. (2003a) TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat. Immunol. 4, 161-167 https://doi.org/10.1038/ni886
  76. Wen, L., Peng, J., Li, Z., and Wong, F. S. (2004) The effect of innate immunity on autoimmune diabetes and the expression of Toll-like receptors on pancreatic islets. J. Immunol. 172, 3173-3180 https://doi.org/10.4049/jimmunol.172.5.3173
  77. Aderem, A. and Ulevitch, R. J. (2000) Toll-like receptors in the induction of the innate immune response. Nature 406, 782-787 https://doi.org/10.1038/35021228
  78. Edfeldt, K., Swedenborg, J., Hansson, G. K., and Yan, Z. Q. (2002) Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105, 1158-1161
  79. Hacker, H., Vabulas, R. M., Takeuchi, O., Hoshino, K., Akira, S., et al. (2000) Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J. Exp. Med. 192, 595-600 https://doi.org/10.1084/jem.192.4.595
  80. Medzhitov, R., Preston-Hurlburt, P., and Janeway, C. A., Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-397 https://doi.org/10.1038/41131
  81. Lu, M., Zhang, M., Takashima, A., Weiss, J., Apicella, M. A., et al. (2005) Lipopolysaccharide deacylation by an endogenous lipase controls innate antibody responses to Gram-negative bacteria. Nat. Immunol. 6, 989-994 https://doi.org/10.1038/ni1246
  82. Meade, E. A., McIntyre, T. M., Zimmerman, G. A., and Prescott, S. M. (1999) Peroxisome proliferators enhance cyclooxygenase- 2 expression in epithelial cells. J. Biol. Chem. 274, 8328-8334 https://doi.org/10.1074/jbc.274.12.8328
  83. Frantz, S., Kobzik, L., Kim, Y. D., Fukazawa, R., Medzhitov, R., et al. (1999) Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J. Clin. Invest. 104, 271-280 https://doi.org/10.1172/JCI6709
  84. Joosten, L. A., Koenders, M. I., Smeets, R. L., Heuvelmans- Jacobs, M., Helsen, M. M., et al. (2003) Toll-like receptor 2 pathway drives streptococcal cell wall-induced joint inflammation: critical role of myeloid differentiation factor 88. J. Immunol. 171, 6145-6153 https://doi.org/10.4049/jimmunol.171.11.6145
  85. Bjorkbacka, H., Kunjathoor, V. V., Moore, K. J., Koehn, S., Ordija, C. M., et al. (2004) Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat. Med. 10, 416-421 https://doi.org/10.1038/nm1008
  86. Kersten, S., Desvergne, B., and Wahli, W. (2000) Roles of PPARs in health and disease. Nature 405, 421-424 https://doi.org/10.1038/35013000
  87. Triantafilou, M., Miyake, K., Golenbock, D. T., and Triantafilou, K. (2002) Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharideinduced cell activation. J. Cell Sci. 115, 2603-2611
  88. Horng, T., Barton, G. M., and Medzhitov, R. (2001) TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol. 2, 835-841 https://doi.org/10.1038/ni0901-835
  89. Meylan, E., Burns, K., Hofmann, K., Blancheteau, V., Martinon, F., et al. (2004) RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat. Immunol. 5, 503-507 https://doi.org/10.1038/ni1061
  90. Sato, S., Sugiyama, M., Yamamoto, M., Watanabe, Y., Kawai, T., et al. (2003) Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptorassociated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFNregulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171, 4304-4310 https://doi.org/10.4049/jimmunol.171.8.4304
  91. Akira, S., Takeda, K., and Kaisho, T. (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675-680 https://doi.org/10.1038/90609
  92. Miller, Y. I., Viriyakosol, S., Binder, C. J., Feramisco, J. R., Kirkland, T. N., et al. (2003) Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J. Biol. Chem. 278, 1561-1568 https://doi.org/10.1074/jbc.M209634200
  93. Netea, M. G., Kullberg, B. J., Galama, J. M., Stalenhoef, A. F., Dinarello, C. A., et al. (2002) Non-LPS components of Chlamydia pneumoniae stimulate cytokine production through Toll-like receptor 2-dependent pathways. Eur. J. Immunol. 32, 1188-1195 https://doi.org/10.1002/1521-4141(200204)32:4<1188::AID-IMMU1188>3.0.CO;2-A
  94. Schnare, M., Holt, A. C., Takeda, K., Akira, S., and Medzhitov, R. (2000) Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr. Biol. 10, 1139-1142 https://doi.org/10.1016/S0960-9822(00)00700-4
  95. Werner, S. L., Barken, D., and Hoffmann, A. (2005) Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309, 1857-1861 https://doi.org/10.1126/science.1113319
  96. Cario, E. and Podolsky, D. K. (2000) Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun. 68, 7010-7017 https://doi.org/10.1128/IAI.68.12.7010-7017.2000
  97. Gohda, J., Matsumura, T., and Inoue, J. (2004) Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J. Immunol. 173, 2913-2917 https://doi.org/10.4049/jimmunol.173.5.2913
  98. Lee, J. Y., Plakidas, A., Lee, W. H., Heikkinen, A., Chanmugam, P., et al. (2003b) Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. J. Lipid Res. 44, 479-486 https://doi.org/10.1194/jlr.M200361-JLR200
  99. Michelsen, K. S., Wong, M. H., Shah, P. K., Zhang, W., Yano, J., et al. (2004) Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl. Acad. Sci. USA 101, 10679-10684
  100. Seibl, R., Birchler, T., Loeliger, S., Hossle, J. P., Gay, R. E., et al. (2003) Expression and regulation of Toll-like receptor 2 in rheumatoid arthritis synovium. Am. J. Pathol. 162, 1221-1227 https://doi.org/10.1016/S0002-9440(10)63918-1
  101. Serhan, C. N. and Savill, J. (2005) Resolution of inflammation: the beginning programs the end. Nat. Immunol. 6, 1191-1197 https://doi.org/10.1038/ni1276
  102. Burns, K., Martinon, F., Esslinger, C., Pahl, H., Schneider, P., et al. (1998) MyD88, an adapter protein involved in interleukin-1 signaling. J. Biol. Chem. 273, 12203-12209 https://doi.org/10.1074/jbc.273.20.12203
  103. Fitzgerald, K. A., McWhirter, S. M., Faia, K. L., Rowe, D. C., Latz, E., et al. (2003a) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491-496 https://doi.org/10.1038/ni921
  104. Franchimont, D., Vermeire, S., El Housni, H., Pierik, M., Van Steen, K., et al. (2004) Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn's disease and ulcerative colitis. Gut. 53, 987-992 https://doi.org/10.1136/gut.2003.030205
  105. Hawn, T. R., Wu, H., Grossman, J. M., Hahn, B. H., Tsao, B. P., et al. (2005) A stop codon polymorphism of Tolllike receptor 5 is associated with resistance to systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA 102, 10593-10597
  106. Saitoh, S., Akashi, S., Yamada, T., Tanimura, N., Kobayashi, M., et al. (2004) Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligomerization. Int. Immunol. 16, 961-969 https://doi.org/10.1093/intimm/dxh097
  107. Stulnig, T. M., Huber, J., Leitinger, N., Imre, E. M., Angelisova, P., et al. (2001) Polyunsaturated eicosapentaenoic acid displaces proteins from membrane rafts by altering raft lipid composition. J. Biol. Chem. 276, 37335-37340 https://doi.org/10.1074/jbc.M106193200
  108. Sun, J., Wiklund, F., Zheng, S. L., Chang, B., Balter, K., et al. (2005) Sequence variants in Toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk. J. Natl. Cancer Inst. 97, 525-532 https://doi.org/10.1093/jnci/dji070
  109. Walton, K. A., Cole, A. L., Yeh, M., Subbanagounder, G., Krutzik, S. R., et al. (2003) Specific phospholipid oxidation products inhibit ligand activation of toll-like receptors 4 and 2. Arterioscler. Thromb. Vasc. Biol. 23, 1197-1203 https://doi.org/10.1161/01.ATV.0000079340.80744.B8
  110. Yamamoto, M., Sato, S., Hemmi, H., Uematsu, S., Hoshino, K., et al. (2003b) TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol. 4, 1144-1150 https://doi.org/10.1038/ni986
  111. Zeyda, M., Staffler, G., Horejsi, V., Waldhausl, W., and Stulnig, T. M. (2002) LAT displacement from lipid rafts as a molecular mechanism for the inhibition of T cell signaling by polyunsaturated fatty acids. J. Biol. Chem. 277, 28418-28423 https://doi.org/10.1074/jbc.M203343200
  112. Ohashi, K., Burkart, V., Flohe, S., and Kolb, H. (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164, 558-561 https://doi.org/10.4049/jimmunol.164.2.558
  113. Hamann, L., Gomma, A., Schroder, N. W., Stamme, C., Glaeser, C., et al. (2005) A frequent toll-like receptor (TLR)-2 polymorphism is a risk factor for coronary restenosis. J. Mol. Med. 83, 478-485 https://doi.org/10.1007/s00109-005-0643-7
  114. Kiechl, S., Lorenz, E., Reindl, M., Wiedermann, C. J., Oberhollenzer, F., et al. (2002) Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med. 347, 185-192 https://doi.org/10.1056/NEJMoa012673
  115. Jiang, Q., Akashi, S., Miyake, K., and Petty, H. R. (2000) Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J. Immunol. 165, 3541-3544 https://doi.org/10.4049/jimmunol.165.7.3541
  116. Kutuzova, G. D., Albrecht, R. M., Erickson, C. M., and Qureshi, N. (2001) Diphosphoryl lipid A from Rhodobacter sphaeroides blocks the binding and internalization of lipopolysaccharide in RAW 264.7 cells. J. Immunol. 167, 482-489 https://doi.org/10.4049/jimmunol.167.1.482
  117. Minoretti, P., Gazzaruso, C., Vito, C. D., Emanuele, E., Bianchi, M., et al. (2006) Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer's disease. Neurosci. Lett. 391, 147-149 https://doi.org/10.1016/j.neulet.2005.08.047