Properties of Capacity on Carbon Electrode in EC : MA Electrolyte II. Effect of Additives on Initial Irreversible Capacity

EC : MA 혼합전해질에서 카본 전극의 용량 특성 II. 초기 비가역 용량에 대한 첨가제의 효과

  • Park, Dong-Won (Department of Chemistry & RRC/HECS & IBS, Chonnam National University) ;
  • Kim, Woo-Seong (R & D Center, DaeJung Chemicals & Metals Co., LTD) ;
  • Son, Dong-Un (Department of Chemistry & RRC/HECS & IBS, Chonnam National University) ;
  • Choi, Yong-Kook (Department of Chemistry & RRC/HECS & IBS, Chonnam National University)
  • 박동원 (전남대학교 자연과학대학 화학과 & RRC/HECS & IBS) ;
  • 김우성 (대정화금(주) 중앙연구소) ;
  • 손동언 (전남대학교 자연과학대학 화학과 & RRC/HECS & IBS) ;
  • 최용국 (전남대학교 자연과학대학 화학과 & RRC/HECS & IBS)
  • Received : 2006.01.02
  • Accepted : 2006.11.08
  • Published : 2006.12.10


Solid electrolyte interface is formed on a carbon electrode used as an anode in Li-ion battery, which can be of $Li^{+}$ intercalation/deintercalation during the first cycle. The passivation film formed by a solvent decomposition during the initial charge process affects cell performance and it was one of the main reason of an initial irreversible capacity. This paper describes the use, for the first time, of $Li_2CO_3$ as the additive for the formation of a passivation film on the carbon surface to suppress the initial irreversible reaction. Chronopotentiometry, cyclic voltammetry, and impedance spectroscopy were used to investigate the effects of the $Li_{2}CO_{3}$ additive. Scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction were also used to monitor changes in the surface morphology and composition of the passivation film formed by solvent decomposition and the precipitation of $Li_{2}CO_{3}$. The addition of $Li_{2}CO_{3}$ to a solution of 1 M $LiPF_{6}$/EC:MA (1:3, v/v) resulted in a decrease in the initial irreversible capacity and it was due to the suppression of the solvent decomposition on the electrode surface.


Li-ion battery;initial irreversible capacity;$Li_{2}CO_{3}$ additive


Supported by : 과학기술부


  1. U. von Sacken, E. Nodwell, A. Sundger, and J. R. Dahn, Solid State Ionics, 138, 2207 (1991)
  2. M. Kikuchi, Y. Ikezawa, and T. Takamura, J. Electroanal. Chem., 396, 451 (1995)
  3. D. Aurbach, Y. Ein-Eli, O. Chusid (Youngman), Y. Carmeli, M. Babai, and H. Yamin, J. Electrochem. Soc., 141, 603 (1994)
  4. K.-I. Chung, J.-G. Park, W.-S. Kim, Y.-E. Sung, and Y.-K. Choi, J. Power Sources, 112, 626 (2002)
  5. W.-S. Kim, K.-I. Chung, J.-H. Cho, D.-W. Park, C.-Y, Kim, and Y.-K. Choi, J. Ind. Eng. Chem., 9, 699 (2003)
  6. D.-W. Park, W.-S. Kim, D.-U. Son, S.-P. Kim, and Y.-K. Choi, J. Korean Ind. Eng. Chem., 12, 183 (2006)
  7. T. Osaka, T. Momma, Y. Matsumoto, and Y. Uchida, J. Electrochem. Soc., 144, 1709 (1997)
  8. T. Abe, N. Kawabata, Y. Mizutani, M. Inaba, and Z. Ogumi, J. Electrochem. Soc., 150, A257 (2003)
  9. D. Aurbach, Y. Gofer, M. Ben-Zion, and P. Aped, J. Electroanal. Chem., 339, 451 (1992)
  10. J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, J. Power Sources, 54, 228 (1995)
  11. Y. Ein-Eli, S. R. Thomas, and V. R. Koch, J. Electrochem. Soc., 144, 1159 (1997)
  12. D. Aurbach, Y. Ein-Eli, B. Markovsky, A. Zaban, S. Luski, Y. Carmeli, and H. Yamin, J. Electrochem. Soc., 142, 2882 (1995)
  13. M. Winter, R. Imhof, F. Joho, and P. Novk, J. Power Sources, 81, 818 (1999)
  14. D. Aurbach and A. Zaban, J. Electroanal. Chem., 348, 155 (1993)
  15. M. Egashira, S. Okada, and J. Yamaki, J. Power Sources, 124, 237 (2003)
  16. Y.-K. Choi, K.-I. Chung, W.-S. Kim, Y.-E. Sung, and S.-M. Park, J. Power Sources, 104, 132 (2002)