Sire-maternal Grandsire Model and Sire Model in Estimation of Genetic Parameters for Average Daily Gain and Carcass Traits of Japanese Black Cattle

  • Kim, Jong-Bok (Faculty of Agriculture, Kagoshima University) ;
  • Lee, Chaeyoung (Ilsong Institute of Life Science, Hallym University) ;
  • Tsuyuki, Tsutomu (Faculty of Agriculture, Kagoshima University) ;
  • Shimogiri, Takeshi (Faculty of Agriculture, Kagoshima University) ;
  • Okamoto, Shin (Faculty of Agriculture, Kagoshima University) ;
  • Maeda, Yoshizane (Faculty of Agriculture, Kagoshima University)
  • Received : 2006.04.21
  • Accepted : 2006.08.19
  • Published : 2005.12.01


The objectives of this study were to estimate genetic parameters and sire breeding values for average daily gain (ADG) and carcass traits using sire-maternal grandsire model with REML approach, sire model with REML approach, sire model without relationships among sires and with REML and ANOVA approach, and to investigate advantages and disadvantages of these methods. Data were collected from 42,325 Japanese Black steers and heifers finished and slaughtered from 1991 to 2004. Traits analyzed in this study were average daily gain (ADG) during the fattening period, live weight at slaughter (LW), cold carcass weight (CW), estimated lean yield percentage (LYE), longissimus muscle area (LMA), subcutaneous fat thickness (SFT), rib thickness (RT), and marbling score (BMS). Bivariate analyses were also performed to obtain genetic and phenotypic correlation coefficients among traits. Estimated breeding values were obtained from each model, and simple and rank correlations among breeding values from each model were calculated. Estimates of heritability using the four models ranged from 0.25 to 0.31 in ADG, from 0.21 to 0.24 in LW, from 0.23 to 0.27 in CW, from 0.10 to 0.17 in DP, from 0.40 to 0.42 in LYE, from 0.19 to 0.31 in LMA, from 0.31 to 0.34 in SFT, from 0.26 to 0.33 in RT, and from 0.18 to 0.44 in BMS. The differences in heritability estimates using the four models seemed to be feasible in ADG, CW, DP, LMA, RT, and BMS. Genetic correlation coefficients of ADG with CW, SFT, RT and BMS were moderate to high and positive while the genetic correlation coefficients between ADG and LYE was low and negative. Correlation coefficients of BMS with SFT were negligible for both genetic and phenotypic correlations. The correlations of estimates evaluated from sire models with those from sire-maternal grandsire model were not large enough to convincing that breeding values using a sire model were corresponding to those using a sire-maternal grand sire model. If information of maternal grand sires are not available, the sire model with incomplete pedigree information included only sire of sire (Model 2) is optimal among the sire models evaluated in this study.


  1. Banik, S. and R. S. Gandhi. 2006. Animal model versus conventional methods of sire evaluation in Sahiwal cattle. Asian-Aust. J. Anim. Sci. 19:1225-1228
  2. Crews, Jr., D. H. and R. A. Kemp. 2001. Genetic parameters for ultrasound and carcass measures of yield and quality among replacement and slaughter beef cattle. J. Anim. Sci. 79:17-25
  3. Honda, T., T. Nomura, Y. Yamaguchi and F. Mukai. 2002. Pedigree analysis of genetic subdivision in a population of Japanese Black cattle. Anim. Sci. J. 73:445-452
  4. Honda, T., T. Nomura, Y. Yamaguchi and F. Mukai. 2004. Monitoring of genetic diversity in the Japanese Black cattle population by the use of pedigree information. J. Anim. Breed. Genet. 121:242-252
  5. Kim, J. B. and C. Lee. 2000. Historical look at the genetic improvement in Korean cattle. Asian-Aust. J. Anim. Sci. 13(10):1467-1481
  6. Nephawe, K. A., L. V. Cundiff, M. E. Dikeman, J. D. Crouse and L. D. Van Vleck. 2004. Genetic relationships between sexspecific traits in beef cattle: Mature weight, Weight adjusted for body condition score, height and body condition score of cows, and carcass traits of their steer relatives. J. Anim. Sci. 82:647-653
  7. Pariacote, F., L. D. Van Vleck and R. E. Hunsley. 1998. Genetic and phenotypic parameters for carcass traits of American Shorthorn beef cattle. J. Anim. Sci. 76:2584-2588
  8. Robinson, R. L. and V. H. Oddy. 2004. Genetic parameters for feed efficiency, fatness, muscle area and feeding behaviour of feedlot finished beef cattle. Livest. Prod. Sci. 90:255-270
  9. SAS. 1985. SAS User's guide. SAS Inst., Inc., Cary, NC
  10. Sasaki, Y. 1992. The effectiveness of the best linear unbiased prediction of beef sires using field data collected from small farms. J. Anim. Sci. 70:3317-3321
  11. Veseth, D. A., W. L. Reynolds, J. J. Urick, T. C. Nelsen, R. E. Short and D. D. Kress. 1993. Paternal half-sib heritabilities and genetic, environmental and phenotypic correlation estimates from randomly selected Hereford cattle. J. Anim. Sci. 71:1730-1736
  12. Wilson, D. E., R. L. Willham, S. L. Northcutt and G. H. Rouse. 1993. Genetic parameters for carcass traits estimated from Angus field records. J. Anim. Sci. 71:2365-2370
  13. Wulf, D. M., J. D. Tatum, R. D. Green, J. B. Morgan, B. L. Golden and G. C. Smith. 1996. Genetic influences on beef longissimus palatability in Charolais- and Limousin-sired steers and heifers. J. Anim. Sci. 74:2394-2405
  14. Parkkonen, P., A.-E. Liinamo and M. Ojala. 2000. Estimates of genetic parameters for carcass traits in Finnish Ayrshire and Holstein-Friesian. Livest. Prod. Sci. 64:203-213
  15. Reverter, A., D. J. Johnston, H.-U. Graser, M. L. Wolcott and W. H. Upton. 2000. Genetic analyses of live-animal ultrasound and abattoir carcass traits in Australian Angus and Hereford cattle. J. Anim. Sci. 78:1786-1795
  16. Eriksson, S., A. Nsholm, K. Johansson and J. Philipsson. 2003. Genetic analyses of field-recorded growth and carcass traits for Swedish beef cattle. Livest. Prod. Sci. 84:53-62
  17. Baik, D. H., M. A. Hoque and H. S. Choe. 2002. Estimation of genetic and environmental parameters of carcass traits in Hanwoo (Korean Native Cattle) populations. Asian-Aust. J. Anim. Sci. 15:1523-1526
  18. Crews, Jr., D. H. and R. A. Kemp. 1999. Contributions of preweaning growth information and maternal effects for prediction of carcass trait breeding values among crossbred beef cattle. Can. J. Anim. Sci. 79:17-25
  19. Koch, R. M., L. V. Cundiff, K. E. Gregory and L. D. Van Vleck. 2004. Genetic response to selection for weaning weight or yearling weight or yearling weight and muscle score in Hereford cattle: Efficiency of gain, growth, and carcass characteristics. J. Anim. Sci. 82:668-682
  20. Reynolds, W. L., J. J. Urick, D. A. Veseth, D. D. Kress, T. C. Nelsen and R. E. Short. 1991. Genetic parameters by son-sire covariance for growth and carcass traits of Hereford bulls in a nonselected herd. J. Anim. Sci. 69:1000-1007
  21. Rios-Utrera, A., L. V. Cundiff, K. E. Gregory, R. M. Koch, M. E. Dikeman, M. Koohmaraie and L. D. Van Vleck. 2005. Genetic analysis of carcass traits of steers adjusted to age, weight, or fat thickness slaughter endpoints. J. Anim. Sci. 83:764-776
  22. Ibi, T., H. Hirooka, A. K. Kahi, Y. Sasae and Y. sasaki. 2005. Genotype x environment interaction effects on carcass traits in Japanese Black cattle. J. Anim. Sci. 83:1503-1510
  23. Oikawa, T., M. A. Hoque, T. Hitomi, K. Suzuki and H. Uchida. 2006. Genetic parameters for traits in performance and progeny tests and their genetic relationships in Japanese Black cattle. Asian-Aust. J. Anim. Sci. 19:611-616
  24. Sri Rachma Aprilita Bugiwati, T. D., H. Harada and R. Fukuhara. 2000. Genetic and environmental effects on carcass traits of Japanese Brown cattle. Asian-Aust. J. Anim. Sci. 13:1-5
  25. Barker, B. P., W. L. Mies, J. W. Turner, D. K. Lunt and S. B. Smith. 1995. Influence of production system on carcass characteristics of F1 Wagyu x Angus Steers and Heifers. Meat Sci. 41:1-5
  26. Mir, P. S., D. R. C. Baily, Z. Mir, T. Entz, S. D. M. Jones, W. M. Robertson, R. J. Weselake and F. J. Lozeman. 1999. Growth, carcass and meat quality characteristics of beef cattle with 0, 50 and 75 percent Wagyu genetic influence. Can. J. Anim. Sci. 79:129-137
  27. Marshall, D. M. 1994. Breed differences and genetic parameters for body composition traits in beef cattle. J. Anim. Sci. 72:2745-2755
  28. Sasaki, Y., T. Miyake, C. Gaillard, T. Oguni, M. Matsumoto, M. Ito, T. Kurahara, Y. Sasae, K. Fujinaka, S. Ohtagaki and T. Dougo. 2006. Comparison of genetic gains per year for carcass traits among breeding programs in the Japanese Brown and Japanese Black cattle. J. Anim. Sci. 84:317-323
  29. Engellandt, Th., N. Reinsch, H. J. Schild and E. Kalm. 1999. Genetic parameters from two different field testing schemes for beef traits of German Gelbvieh finishing bulls. Livest. Prod. Sci. 60:219-228
  30. Searle, S. R. 1989. Variance Components - Some history and a summary account of estimation methods. J. Anim. Breed. Genet. 106:1-29
  31. Boldman, K. G., L. A. Kriese, L. D. Van Vleck, C. P. Van Tassell, and S. D. Kachman. 1995. A manual for use of MTDFREML: A set of programs to obtain estimates of variances and covariances. ARS, USDA, Washington, DC
  32. Hirooka, H., Ab F. Groen and M. Matsumoto. 1996. Genetic parameters for growth and carcass traits in Japanese Brown cattle estimated from field records. J. Anim. Sci. 74:2112-2116
  33. Jensen, J., I. L. Mao, B. Bech Andersen and P. Madsen. 1991. Genetic parameters of growth, feed intake, feed conversion and carcass composition of dual-purpose bulls in performance testing. J. Anim. Sci. 69:931-939
  34. Newman, S., A. Reverter and D. J. Johnston. 2002. Purebredcrossbred performance and genetic evaluation of postweaning growth and carcass traits in Bos indicus x Bos taurus crosses in Australia. J. Anim. Sci. 80:1801-1808
  35. Koots, K. R., J. P. Gibson, C. Smith and J. W. Wilton. 1994a. Analyses of published genetic parameter estimates for beef production traits. 1. Heritability. Anim. Breed. Abstr. 62:309- 338
  36. Pitchford, W. S., M. P. B. Deland, B. D. Siebert, A. E. O. Malau- Aduli and C. D. K. Bottema. J. Anim. Sci. 80:2825-2832
  37. Nomura, T., T. Honda and F. Mukai. 2001. Inbreeding and effective population size of Japanese Black cattle. J. Anim. Sci. 79:366-370
  38. Koots, K. R., J. P. Gibson, C. Smith and J. W. Wilton. 1994b. Analyses of published genetic parameter estimates for beef production traits. 2. Phenotypic and genetic correlations. Anim. Breed. Abstr. 62:825-853
  39. Crews, Jr., D. H., E. J. Pollak and R. L. Quaas. 2004. Evaluation of Simmental carcass EDP estimated using live and carcass data. J. Anim. Sci. 82:661-667
  40. Kemp, D. J., W. O. Herring and C. J. Kaiser. 2002. Genetic and environmental parameters for steer ultrasound and carcass traits. J. Anim. Sci. 80:1489-1496
  41. Sasaki, Y. 2001. Beef cattle breeding and its trend in Japan. Asian- Aust. J. Anim. Sci. 14:111-122
  42. Ferreira, G. B., M. D. Macneil and L. D. Van Vleck. 1999. Variance components and breeding values for growth traits from different statistical models. J. Anim. Sci. 77:2641-2650
  43. JMGA. 1988. New Beef Grading Standards. Jpn. Meat Grading Assoc., Tokyo, Japan
  44. Mukai, F., K. Oyama and S. Kohno. 1995. Genetic relationships between performance test traits and field carcass traits in Japanese Black cattle. Livest. Prod. Sci. 44:199-205
  45. Riley, D. G., C. C. Chase, Jr., A. C. Hammond, R. L. West, D. D. Johnson, T. A. Olson and S. W. Coleman. 2002. Estimated genetic parameters for carcass traits of Brahman cattle. J. Anim. Sci. 80:955-962
  46. Aass, L. 1996. Variation in carcass and meat quality traits and their relations to growth in dual purpose cattle. Livest. Prod. Sci. 46:1-12

Cited by

  1. Estimation of Genetic Parameters for Average Daily Gain and Carcass Traits of Hanwoo vol.54, pp.5, 2012,
  2. Estimation of variance components for carcass traits in Japanese Black cattle using 50K SNP genotype data vol.85, pp.1, 2013,
  3. Genetic Relationships of Carcass Traits with Retail Cut Productivity of Hanwoo Cattle vol.27, pp.10, 2014,