The Ozone Stress Transcriptome of Pepper (Capsicum annuum L.)

  • Lee, Sanghyeob (Plant Genomics Laboratory, Genome Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yun, Sung-Chul (Department of Applied Biological Sciences, Sun Moon University)
  • Received : 2005.09.21
  • Accepted : 2006.01.19
  • Published : 2006.04.30

Abstract

We used cDNA microarrays to monitor the transcriptome of ozone stress-regulated genes (ORGs) in two pepper cultivars [Capsicum annuum cv. Dabotop (ozone-sensitive) and Capsicum annuum cv. Buchon (ozone-tolerant)]. Ozone stress up- or down-regulated 180 genes more than three-fold. Transcripts of 84 of these ORGs increased, transcripts of 88 others diminished, and those of eight either accumulated or diminished at different time points in the two cultivars or changed in only one of the cultivars. 67% (120) of the ORGs were regulated differently in ozone-sensitive and ozone-tolerant peppers, most being specifically up-regulated in the ozone-sensitive cultivar. Many were also represented in the plant defense transcriptome against non-host pathogen infection, and some in the transcriptomes for cold, drought, and salinity stresses.

Keywords

Capsicum annuum;Ozone Stress;Transcriptome

Acknowledgement

Supported by : Korea Science and Engineering Foundation, Korean Ministry of Science and Technology

References

  1. Agrawal, G. K., Rakwal, R., Yonekura, M., Kubo, A., Saji, H., et al. (2002) Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteimics 2, 947-959 https://doi.org/10.1002/1615-9861(200208)2:8<947::AID-PROT947>3.0.CO;2-J
  2. Blokhina, O., Virolainen, E., and Fagerstedt, K. (2003) Antioxidant, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91, 179-194 https://doi.org/10.1093/aob/mcf118
  3. Ginzinger, D. G., Godfrey, T. E., Nigro, J., Moore, D. H., Suzuki, S., et al. (2000) Measurement of DNA copy number at microsatellite loci using quantative PCR analysis. Cancer Res. 60, 5405-5409
  4. Hung, C. J., Ginzinger, D. G., Zarnegar, R., Kanauchi, H., Wong, M. G., et al. (2003) Expression of vascular endothelial growth factor-C in benign and malignant thyroid tumors. J. Clin. Endocrinol. Metab. 88, 3694-3696 https://doi.org/10.1210/jc.2003-030080
  5. Mudd, J. B. (1997) Biochemical basis for the toxicity of ozone; in Plant Response to Air Polution, Yunus, M. and lqba, M. (eds.), pp. 267-284, Wiley & Sons, New York
  6. Prasad, T. K., Anderson, M. D., Martin, B. A., and Steward, C. R. (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6, 65-74 https://doi.org/10.1105/tpc.6.1.65
  7. Rao, M. V., Koch, J. R., and Davis, K. R. (2000) Ozone: a tool for probing programmed cell death in plants. Plant Mol. Biol. 44, 345-358 https://doi.org/10.1023/A:1026548726807
  8. Saeed, A. I., Sharov, V., White, J., Li, J., Liang, W., et al. (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374-378
  9. Sharma, Y. K. and Davis, K. R. (1994) Ozone-induced expression of stress-related genes in Arabidopsis thaliana. Plant Physiol. 105, 1089-1096 https://doi.org/10.1104/pp.105.4.1089
  10. Tamaoki, M., Matsuyama, T., Kanna, M., Nakajima, N., Kubo, A., et al. (2003a) Differential ozone sensitivity among Arabidopsis accessions and its relevance to ethylene synthesis. Planta. 216, 552-560
  11. Tuomainen, J., Kangasjarvi, J., Betz, C., Ernest, D., Langebartels, C., et al. (1995) Ozone activation of ethylene biosynthesis proceeds via differential accumulation of transcripts for 1-aminocyclopropane-1-carboxylate synthase genes; In plant Growth Regulator Conference, Pittsburgh. Abstr No. 362
  12. Van der Hoeven, R., Ronning, C., Giovannoni, J., Martin, G., and Tanksley, S. (2002) Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14, 1441-1456 https://doi.org/10.1105/tpc.010478
  13. Alscher, R. G., Erturk, N., and Heath, L. S. (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53, 1331-1341 https://doi.org/10.1093/jexbot/53.372.1331
  14. Overmyer, K., Brosche, M., and Kangasjarvl, J. (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci. 8, 335-342 https://doi.org/10.1016/S1360-1385(03)00135-3
  15. Surplus, S. L., Jordan, B. R., Murphy, A. M., Carr, J. P., Thomas, B., et al. (1998) Ultraviolet-B-induced responses in Arabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant cell environ. 21, 685-694 https://doi.org/10.1046/j.1365-3040.1998.00325.x
  16. Apel, K. and Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 55, 373-399 https://doi.org/10.1146/annurev.arplant.55.031903.141701
  17. Ernst, D., Schraudner, M., Langebartels, C., and Sandermann, H. Jr. (1992) Ozone-induce changes of mRNA of beta-1, 30 glucanase, chitinase, and 'pathogenesis-related' protein 1b in tobacco plants. Plant Mol. Biol. 20, 673-682 https://doi.org/10.1007/BF00046452
  18. Sharma, Y. K. and Davis, K. R. (1997) The effects of ozone on antioxidant responses in plants. Free Radic. Biol. Med. 23, 480-488 https://doi.org/10.1016/S0891-5849(97)00108-1
  19. Richards, K. D., Schott, E. J., Sharma, Y. K., Davis, K. R., and Gardner, R. C. (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol. 116, 409-418 https://doi.org/10.1104/pp.116.1.409
  20. Sandermann, H. Jr. (1996) Ozone and plant health. Annu. Rev. Phytopathol. 34, 347-366 https://doi.org/10.1146/annurev.phyto.34.1.347
  21. Sharma, Y. K., Leon, J., Raskin, I., and Davis, K. R. (1996) Ozone-induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc. Natl. Acad. Sci. USA. 93, 5099-5104
  22. Sandermann, H. Jr., Ernst, E., Heller, W., and Langebartels, C. (1998) Ozone: An abiotic elicitor of plant defence reactions. Trends. Plant Sci. 3, 47-49 https://doi.org/10.1016/S1360-1385(97)01162-X
  23. Tognolli, M., Penel, C., Greppin, H., and Simon, P. (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene. 288, 129-138 https://doi.org/10.1016/S0378-1119(02)00465-1
  24. Ludwikow, A., Gallois, P., and Sadowski, J. (2004) Ozoneinduced oxidative stress response in Arabidopsis: transcription profiling by microarray approach. Cell Mol. Biol. Lett. 9, 829-842
  25. Rao, M., Lee, H. I., and Davis, K. R. (2002) Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozoneinduced cell death. Plant J. 32, 447-456 https://doi.org/10.1046/j.1365-313X.2002.01434.x
  26. Yun, S. C. and Kim, B. S. (2004) Tropospheric ozone pollutions in Korea during 1998-2002 using two ozone indices for vegetation protection. Kor. J. Agri. For. Meteol. 6, 38-44
  27. Livingstone, K. D., Lackney, V. K., Blauth, J. R., van Wijk, R., and Jahn, M. K. (1999) Genome mapping in capsicum and the evolution of genome structure in the solanaceae. Genetics 152, 1183-1202
  28. McClung, C. R. (1997) Regulation of catalases in Arabidopsis. Free Radic. Biol. Med. 23, 489-496 https://doi.org/10.1016/S0891-5849(97)00109-3
  29. Tenhaken, R., Levine, A., Brisson, L. F., Dixon R. A., and Lamb, C. (1995) Function of the oxidative burst in hypersensitive disease resistance. Proc. Natl. Acad. Sci. USA 92, 4158-4163
  30. Creissen, G., Firmin, J., Fryer, M., Kular, B., and Leyland, N. (1999) Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell 11, 1277-1292 https://doi.org/10.1105/tpc.11.7.1277
  31. Greenberg, J. T., Guo, A., Klessig, D. F., and Ausubel, F. M. (1994) Progarmmed cell death in plants: A pathogentriggered response activated coordinately with multiple defense functions. Cell 77, 551-563 https://doi.org/10.1016/0092-8674(94)90217-8
  32. Moeder, W., Barry, C. S., Tauriainen, A. A., Betz, C., Tuomainen, J., et al. (2002) Ethylene synthesis regulated by biphasic induction of 1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato. Plant Physiol. 130, 1918-1926 https://doi.org/10.1104/pp.009712
  33. Willekens, H., van Camp, W., Van Montague, M., Inze, D., Langebartels, C., et al. (1994) Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginfolia (L.). Plant Physiol. 106, 1007-1014 https://doi.org/10.1104/pp.106.3.1007
  34. Sharma, Y., Leon, J., Raskin, I., and Davis, K. R. (1996) Ozoneinduce responses in Arabidopsis thaliana: The role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc. Natl. Acad. Sci. USA 93, 5099-5104
  35. Yun, S. C. (2004) The Ecophysiological changes of Capsicum annum on Ozone-sensitive and -resistant varieties exposed to short-term ozone stress. Kor. J. Environ. Agri. 23, 128-132 https://doi.org/10.5338/KJEA.2004.23.3.128
  36. Kramer, G. F., Lee, E. H., Rowland, R. A., and Mulchi, C. L. (1991) Effects of elevated $CO_2$ concentration on the polyamine levels of field-grown soybean at three $O_3$ regimes. Environ. Pollut. 73, 137-152 https://doi.org/10.1016/0269-7491(91)90019-S
  37. Conklin, P. L. and Last, R. L. (1995) Differential accumulation of antioxidant mRNAs in Arabisopsis thaliana exposed to ozone. Plant Physiol. 109, 203-212 https://doi.org/10.1104/pp.109.1.203
  38. Pasqualini, S., Piccioni, C., Reals, L., Ederli, L., Torre, G. D., et al. (2003) Ozone-induced cell death in tobacco cultivar Bel W3 plant. The role of programmed cell death in lesion formation. Plant Physiol. 133, 1122-1134 https://doi.org/10.1104/pp.103.026591
  39. Ruzsa, S. M., Mylona, P., and Scandalios, J. G. (1999) Differential response of antioxidant genes in maize leaves exposed to ozone. Redox Rep. 4, 95-103 https://doi.org/10.1179/135100099101534774
  40. Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends. Plant Sci. 7, 405-710 https://doi.org/10.1016/S1360-1385(02)02312-9
  41. Tamaoki, M., Nakajima, N., Kubo, A., Aono, M., Matsuyama, T., et al. (2003b) Transcriptome analysis of $O_3$-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression. Plant Mol. Biol. 53, 443-456 https://doi.org/10.1023/B:PLAN.0000019064.55734.52
  42. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863-14868
  43. Karpinski, S., Reynolds, H., Karpinska, B., Wingsle, G., Creissen, G., et al. (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284, 654-657 https://doi.org/10.1126/science.284.5414.654
  44. Lee, S., Kim, S. Y., Chung, E., Jung, Y. H., Pai, H. S., et al. (2004) EST and microarray analyses of pathogen-responsive genes in hot pepper (Capsicum annuum L.) non-host resistance against soybean pustule pathogen (Xanthomonas axonopodis pv. glycines). Funct. Integr. Genomics. 4, 196- 205