Synthesis of Monodisperse ZnO Nanoparticles Using Semi-batch Reactor and Effects of HPC Affecting Particle Size and Particle Size Distribution

반회분식 반응을 이용한 단분산 ZnO 나노 입자의 제조 및 입자의 크기와 입도 분포에 영향을 미치는 HPC의 작용

  • Rho, Seung Yun (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Ki Do (Nanonix Co. Ltd., R&D Center) ;
  • Song, Gun Yong (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Hee Taik (Department of Chemical Engineering, Hanyang University)
  • 노승윤 (한양대학교 공학대학 화학공학과) ;
  • 김기도 ((주)나노닉스) ;
  • 송건용 (한양대학교 공학대학 화학공학과) ;
  • 김희택 (한양대학교 공학대학 화학공학과)
  • Received : 2006.01.20
  • Accepted : 2006.04.06
  • Published : 2006.06.10

Abstract

To synthesize ZnO colloidal solution by a sol-gel process, zinc acetate ($C_{4}H_{6}O_{4}Zn{\cdot}2H_{2}O{\cdot}0.2\;mol$) and lithium hydroxide ($LiOH{\cdot}H_{2}O{\cdot}0.14\;mol$) in the ethanol were added to the solution containing a dispersing agent, hydroxypropyl cellulose (HPC). The nanosize and physical shape of the synthesized ZnO particles were determined by HPC acting as the dispersing agent. Nanosized ZnO particles were also obtained by a precipitation method based on zinc-2-ethylhexagonate. The precipitates were characterized by DLS, XRD, FE-SEM, and UV-vis. As the results, the ZnO colloids tend to self-assemble into a well-ordered hexagonal close-packed structure. The ZnO nanoparticles have an average diameter of nearly 40 nm with a narrow size distribution.

Keywords

References

  1. R. C. Buchanan, Ceramic Materials for Electronics, 6, 349 (1995)
  2. Z. L. Wang, Materials Today, 7, 26 (2004)
  3. C. Klingshirn, Phys. Status Solidi., 71, 547 (1975) https://doi.org/10.1002/pssb.2220710216
  4. H. Wang, C. Xie, and D. Zeng., J. Crystal Growth, 277, 372 (2005) https://doi.org/10.1016/j.jcrysgro.2005.01.068
  5. L. Dong, Y. C. Liu, Y. H. Tong, Z. Y. Xiao, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, J. Colloid Interface Sci., 283, 380 (2005) https://doi.org/10.1016/j.jcis.2004.09.044
  6. H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, Science, 300, 1249 (2003) https://doi.org/10.1126/science.1082542
  7. X. Y. Kong and Z. L. Wang, Nano Lett., 3, 1315 (2003) https://doi.org/10.1021/nl034548q
  8. J. Y. Lao, J. Y. Huang, D. Z. Wang, and Z. F. Ren, Nano Lett., 3, 235 (2003) https://doi.org/10.1021/nl025884u
  9. P. X. Gao, Y. Ding, and Z. L. Wang, Nano Lett., 3, 1315 (2003) https://doi.org/10.1021/nl034548q
  10. R. Wu, C. S. Xie, H. Xia. J, H. Hu, and A. H. Wang, J. Crystal Growth, 217, 274 (2000) https://doi.org/10.1016/S0022-0248(00)00506-6
  11. L. Poul, S. Ammar, N. Jouini, F. Fievet, and F. Villain, J. Sol-Gel Sci. Technol., 26, 261 (2003) https://doi.org/10.1023/A:1020763402390
  12. S. H. Hyun and B. S. Kang, J. Am. Ceram. Sci., 77, 3093 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb04554.x
  13. Q. X. and M. A. Anderson, J. Am. Ceram. Sci., 77, 1939 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb07074.x
  14. T. Sugimoto, Advances in Colloid and Interface Sci., 28, 65 (1987) https://doi.org/10.1016/0001-8686(87)80009-X
  15. G. Y. Song, K. D. Kim, and H. T. Kim, J. Korean Ind. Eng. Chem., 12, 4 (2001)