Mitochondrial Location of Severe Acute Respiratory Syndrome Coronavirus 3b Protein

  • Yuan, Xiaoling (Department of Pathophysiology, Beijing Institute of Radiation Medicine) ;
  • Shan, Yajun (Department of Pathophysiology, Beijing Institute of Radiation Medicine) ;
  • Yao, Zhenyu (Department of Pathophysiology, Beijing Institute of Radiation Medicine) ;
  • Li, Jianyong (Department of Pathophysiology, Beijing Institute of Radiation Medicine) ;
  • Zhao, Zhenhu (Department of Pathophysiology, Beijing Institute of Radiation Medicine) ;
  • Chen, Jiapei (Department of Pathophysiology, Beijing Institute of Radiation Medicine) ;
  • Cong, Yuwen (Department of Pathophysiology, Beijing Institute of Radiation Medicine)
  • Received : 2005.06.03
  • Accepted : 2005.12.26
  • Published : 2006.04.30


Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), a distant member of the Group 2 coronaviruses, has recently been identified as the etiological agent of severe acute respiratory syndrome (SARS). The genome of SARS-CoV contains four structural genes that are homologous to genes found in other coronaviruses, as well as six subgroup-specific open reading frames (ORFs). ORF3 encodes a predicted 154-amino-acid protein that lacks similarity to any known protein, and is designated 3b in this article. We reported previously that SARS-CoV 3b is predominantly localized in the nucleolus, and induces G0/G1 arrest and apoptosis in transfected cells. In this study, we show that SARS-CoV 3b fused with EGFP at its N- or C- terminus co-localized with a mitochondriaspecific marker in some transfected cells. Mutation analysis of SARS-CoV 3b revealed that the domain spanning amino acids 80 to 138 was essential for its mitochondria localization. These results provide new directions for studies of the role of SARS-CoV 3b protein in SARS pathogenesis.


3b Protein;Mitochondrial Localization;Mitochondrial Targeting Sequence;SARS Coronavirus;Truncated Mutants


  1. Chen, W., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., et al. (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat. Med. 7, 1306-1312
  2. Ding, Y., Wang, H., Shen, H., Li, Z., Geng, J., et al. (2003) The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J. Pathol. 200, 282-289
  3. Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H. R., et al. (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967-1976
  4. Herrewegh, A. A., Vennema, H., Horzinek, M. C., Rottier, P. J., and de Groot, R. J. (1995) The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF7a/ 7b transcription unit of different biotypes. Virology 212, 622-631
  5. Kuiken, T., Fouchier, R. A., Schutten, M., Rimmelzwaan, G. F., van Amerongen, G., et al. (2003) Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362, 263-270
  6. Rota, P. A., Oberste, M. S., Monroe, S. S., Nix, W. A., Campagnoli, R., et al. (2003) Characterization of a novel coronavirus associated with severe acuterespiratorysyndrome. Science 300, 1394-1399
  7. WHO (2003) A multicentre collaboration to investigate the cause of severe acute respiratory syndrome. Lancet 361, 1730-1733
  8. Yuan, X., Cong, Y., Hao, J., Shan, Y., Zhao, Z., et al. (2004) Regulation of LIP level and ROS formation through interaction of H-ferritin with G-CSF receptor. J. Mol. Biol. 339, 131-144
  9. Shen, S., Wen, Z. L., and Liu, D. X. (2003) Emergence of a coronavirus infectious bronchitis virus mutant with a truncated 3b gene: functional characterization of the 3b protein in pathogenesis and replication. Virology 311, 16-27
  10. Yuan, X., Yao, Z., Shan, Y., Chen, B., Yang, Z., et al. (2005c) Nucleolar localization of non-structural protein 3b, a protein specifically encoded by the severe acute respiratory syndrome coronavirus. Virus Res. 114, 70-79
  11. Griffin, S. D., Harvey, R., Clarke, D. S., Barclay, W. S., Harris, M., et al. (2004) A conserved basic loop in hepatitis C virus p7 protein is required for amantadine-sensitive ion channel activity in mammalian cells but is dispensable for localization to mitochondria. J. Gen. Virol. 85, 451-461
  12. Jacotot, E., Ravagnan, L., Loeffler, M., Ferri, K. F., Vieira, H. L., et al. (2000) The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J. Exp. Med. 191, 33-46
  13. Yuan, X., Shan, Y., Zhao, Z., Chen, J., and Cong, Y. (2005a) G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells. Virol. J. 17, 66-70
  14. Fouchier, R. A., Kuiken, T., Schutten, M., van Amerongen, G., van Doornum, G. J., et al. (2003) Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423, 240
  15. Yamada, H., Chounan, R., Higashi, Y., Kurihara, N., and Kido, H. (2004) Mitochondrial targeting sequence of the influenza A virus PB1-F2 protein and its function in mitochondria. FEBS Lett. 578, 331-336
  16. Marra, M. A., Jones, S. J., Astell, C. R., Holt, R. A., Brooks- Wilson, A., et al. (2003) The genome sequence of the SARSassociated coronavirus. Science 300, 1399-1404
  17. Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., et al. (2003) A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953-1966
  18. Curtis, K. M., Yount, B., and Baric, R. S. (2002) Heterologous gene expression from transmissible gastroenteritis virus replicon particles. J. Virol. 76, 1422-1434
  19. Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., et al. (2003) A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348, 1986-1994
  20. Paul, P. S., Vaughn, E. M., and Halbur, P. G. (1997) Pathogenicity and sequence analysis studies suggest potential role of gene 3 in virulence of swine enteric and respiratory coronaviruses. Adv. Exp. Med. Biol. 412, 317-321
  21. Tsang, K. W., Ho, P. L., Ooi, G. C., Yee, W. K., Wang, T., et al. (2003) A cluster of cases of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348, 1977-1985
  22. Fan, K., Wei, P., Feng, Q., Chen, S., Huang, C., et al. (2004) Biosynthesis, purification and substrate specificity of SARS coronavirus 3C-like proteinase. J. Biol. Chem. 279, 1637-1642
  23. Liu, D. X., Cavanagh, D., Green, P., and Inglis, S. C. (1991) A polycistronic mRNA specified by the coronavirus infectious bronchitis virus. Virology 184, 531-544
  24. De Groot, A. S. (2003) How the SARS vaccine effort can learn from HIV-speeding towards the future, learning from the past. Vaccine 21, 4095-4104
  25. Koyama, A. H., Fukumori, T., Fujita, M., Irie, H., and Adachi, A. (2000) Physiological significance of apoptosis in animal virus infection. Microbes Infect. 2, 1111-1117
  26. Peiris, J. S., Chu, C. M., Cheng, V. C., Chan, K. S., Hung, I. F., et al. (2003b) Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361, 1767-1772
  27. Snijder, E. J., Bredenbeek, P. J., Dobbe, J. C., Thiel, V., Ziebuhr, J., et al. (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331, 991-1004
  28. Yuan, X., Li, J., Shan, Y., Yang, Z., Zhao, Z., et al. (2005b) Subcellular localization and membrane association of SARSCoV 3a protein. Virus Res. 109, 191-202
  29. Peiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., et al. (2003a) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319-1325