A Study on Pyrolysis of Styrene Dimer Fraction (SDF)

스티렌 이량체 유분의 열분해 연구

  • Pei, Hai-Song (Department of Chemical Engineering, Chungnum National University) ;
  • Kang, Yong (Department of Chemical Engineering, Chungnum National University) ;
  • Cho, Deug-Hee (Environment & Resources Technology Research Team, KRICT) ;
  • Choi, Myong-Jae (Environment & Resources Technology Research Team, KRICT) ;
  • Lee, Sang-Bong (Environment & Resources Technology Research Team, KRICT)
  • 배해송 (충남대학교 화학공학과) ;
  • 강용 (충남대학교 화학공학과) ;
  • 조득희 (한국화학연구원 환경자원기술연구팀) ;
  • 최명재 (한국화학연구원 환경자원기술연구팀) ;
  • 이상봉 (한국화학연구원 환경자원기술연구팀)
  • Received : 2006.04.13
  • Accepted : 2006.05.17
  • Published : 2006.06.10

Abstract

Thermal degradation of styrene dimer fraction (SDF, main compound: 47 wt% of 1,3-diphenylpropane), 5~15% of total products produced during decomposition of waste expanded polystyrene (WEPS) was investigated. Reaction condition of $360^{\circ}C$, and 152 kPa to 202 kPa was an optimum for high pressure degradation. Under this operating condition, the yield of oil was 73.8% and the selectivities to Ben, Tol, EB, SM, and AMS were 0.4, 30.9, 15.0, 19.6, and 4.2%, respectively. Non-catalytic fixed bed continuous degradation was conducted at reaction temperatures of $510{\sim}610^{\circ}C$ and contact time ranges of 2~24 min, where the yield was increased by increasing of reaction temperature and contact time. A $Cr_2O_3$ catalyst showed the highest activity and SM yield among acid, base, and redox catalysts. The conversion of 74.6% and the yield of Ben, Tol, EB, SM, and AMS were 0.4, 21.6, 9.7, 17.9, and 3.5%, respectively at $560^{\circ}C$ and contact time of 24 min. It is thought that styrene is converted to EB and other secondary products throughout the formation of diradicals of styrene.

Acknowledgement

Supported by : 과기부

References

  1. S. Y. Lee, J. H. Yoon, and D. W. Park, J. Ind. Eng. Chem., 8, 143 (2002)
  2. O. S. Woo, T. M. Kruse, and L. J. Broadbelt, Poly. Degr. Stab., 70, 155 (2000) https://doi.org/10.1016/S0141-3910(00)00101-4
  3. T. M. Kruse, S. E. Levine, H. W. Wong, E. Duoss, A. H. Lebovitz, J. M. Torkelson, and L. J. Broadbelt, J. Anal. Appl. Pyrolysis, 73, 342 (2005) https://doi.org/10.1016/j.jaap.2005.03.006
  4. T. Blaskar, J. Koneko, A. Muto, Y. Sataka, E. Jakab, T. matsui, and M. A. Uddin, J. Anal. Appl. Pyrolysis, 72, 27 (2004) https://doi.org/10.1016/j.jaap.2004.01.005
  5. Y. Sakata, Md. Azhar Uddin, and A. Muto, J. Anal. Appl. Pyrolysis, 51, 135 (1999) https://doi.org/10.1016/S0165-2370(99)00013-3
  6. A. Marcilla, J. C. Garica-Quesada, S. Sánchez, and R. Ruiz, J. Anal. Appl. Pyrolysis, 74, 387 (2005) https://doi.org/10.1016/j.jaap.2004.10.005
  7. Y. Liu, J. Qian, and J. Wang, Fuel Proc. Tech., 63, 45 (2000) https://doi.org/10.1016/S0378-3820(99)00066-1
  8. K. Huang, L. H. Tang, Z. B. Zhu, and C. F. Zhang, Poly. Degr. Stab., 89, 312 (2005) https://doi.org/10.1016/j.polymdegradstab.2005.01.014
  9. H. Ukei, T. Hirose, S. Horikawa, Y. Takai, M. Taka, N. Azuma, and A. Ueno, Catalysis Today, 62, 67 (2000) https://doi.org/10.1016/S0920-5861(00)00409-0
  10. H. Nanbu, Y. Sakuma, Y. Ishihara, T. Takesue, and T. Ikemura, Poly. Degr. Stab., 19, 61 (1987) https://doi.org/10.1016/0141-3910(87)90013-9
  11. Z. Zhang, T. Hirose, S. Nishio, Y. Morioka, N. Azuma, A. Ueno, H. Ohkita, and M. Okada, I & EC Research, 34, 4514 (1995)
  12. J. S. Kim, W. Y. Lee, S. B. Lee, S. B. Kim, and M. J. Choi, Catalysis Today, 87, 59 (2003) https://doi.org/10.1016/j.cattod.2003.10.004
  13. R. H. Still and O. A. Peters, J. Appl. Polym. Sci., 50, 989 (1993) https://doi.org/10.1002/app.1993.070500608
  14. O. S. Woo, N. Ayala, and L. J. Broadbelt, Catalysis Today, 55, 161 (2000) https://doi.org/10.1016/S0920-5861(99)00235-7
  15. T. M. Krus, O. S. Woo, and L. J. Broadbelt, Chem. Eng. Soi., 56, 971 (2001) https://doi.org/10.1016/S0009-2509(00)00312-2
  16. J. S. Kim, S. J. Kim, J. S. Yun, Y. Kang, and M. J. Choi, Hwahak Konghak, 39, 465 (2001)
  17. J. S. Kim, W. Y. Lee, M. J. Choi, and Y. Kang, Theories and Applications of Chem. Eng., 6, 4337 (2000)
  18. V. R. Chumbhale, J. S. Kim, S. B. Lee, and M. J. Choi, J. Molecular catalysis A: Chemical, 222, 133 (2004) https://doi.org/10.1016/j.molcata.2004.07.002
  19. O. S. Woo and L. J. broadbelt, Catalysis Today, 40, 121 (1998) https://doi.org/10.1016/S0920-5861(97)00130-2
  20. R. W. J. Westerhout, J. Waanders, J. A. M. Kuipers, and W. P. Swaaij, I & EC Research, 36, 1995 (1997)
  21. D. W. Shun, Y. S. Chim, S. H. Cho, and J. E. Son, J. Korean Solid Wastes Eng. Society, 10, 195 (1993)