One-Step Selection of Artificial Transcription Factors Using an In Vivo Screening System

  • Bae, Kwang-Hee (ToolGen, Inc.) ;
  • Kim, Jin-Soo (Department of Chemistry, Seoul National University)
  • Received : 2006.01.16
  • Accepted : 2006.04.04
  • Published : 2006.06.30

Abstract

Gene expression is regulated in large part at the level of transcription under the control of sequence-specific transcriptional regulatory proteins. Therefore, the ability to affect gene expression at will using sequencespecific artificial transcription factors would provide researchers with a powerful tool for biotechnology research and drug discovery. Previously, we isolated 56 novel sequence-specific DNA-binding domains from the human genome by in vivo selection. We hypothesized that these domains might be more useful for regulating gene expression in higher eukaryotic cells than those selected in vitro using phage display. However, an unpredictable factor, termed the "context effect", is associated with the construction of novel zinc finger transcription factors--- DNA-binding proteins that bind specifically to 9-base pair target sequences. In this study, we directly selected active artificial zinc finger proteins from a zinc finger protein library. Direct in vivo selection of constituents of a zinc finger protein library may be an efficient method for isolating multi-finger DNA binding proteins while avoiding the context effect.

Keywords

Artificial Transcription Factor;Context Effect;In vivo Selection;Zinc Finger

References

  1. Brent, R. and Ptashne, M. A. (1985) Eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43, 729-736 https://doi.org/10.1016/0092-8674(85)90246-6
  2. Choo, Y. and Klug, A. (1994) Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc. Natl. Acad. Sci. USA 91, 11163- 11167 https://doi.org/10.1073/pnas.91.23.11163
  3. Isalan, M., Klug, A., and Choo, Y. (2001) A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat. Biotech. 19, 656-660 https://doi.org/10.1038/90264
  4. Kim, J.-S. and Pabo, C. O. (1997) Transcriptional repression by zinc finger peptides. Exploring the potential for applications in gene therapy. J. Biol. Chem. 272, 29795-29800 https://doi.org/10.1074/jbc.272.47.29795
  5. Segal, D. J., Dreier, B., Beerli, R. R., and Barbas, C. F. (1999) Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN- 3′ DNA target sequences. Proc. Natl. Acad. Sci. USA 96, 2758-2763 https://doi.org/10.1073/pnas.96.6.2758
  6. Pabo, C. O., Peisach, E., and Grant, R. A. (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70, 313-340 https://doi.org/10.1146/annurev.biochem.70.1.313
  7. Park, K. S., Lee, D.-K., Lee, H., Lee, Y., Jang, Y. S., et al. (2003) Phenotype alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat. Biotech. 21, 1208-1214 https://doi.org/10.1038/nbt868
  8. Beerli, R. R. and Barbas, C. F. (2002) Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20, 135- 141 https://doi.org/10.1038/nbt0202-135
  9. Joung, J. K., Ramm, E. I., and Pabo, C. O. (2000) A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc. Natl. Acad. Sci. USA 97, 7382-7387 https://doi.org/10.1073/pnas.110149297
  10. Chevray, P. M. and Nathans, D. (1992) Protein interaction cloning in yeast: identification of mammalian proteins that interact with the leucine zipper of Jun. Proc. Natl. Acad. Sci. USA 89, 5789-5793 https://doi.org/10.1073/pnas.89.13.5789
  11. Herskowitz, I. and Jensen, R. E. (1991) Putting the HO gene to work: practical uses for mating-type switching. Methods Enzymol. 194, 132-146 https://doi.org/10.1016/0076-6879(91)94011-Z
  12. Kim, S.-J., Kang, S.-Y., Shin, H.-H., and Choi, H.-S. (2005) Sulforaphane inhibits osteoclastogenesis by inhibiting nuclear factor-kB. Mol. Cells 20, 364-370
  13. Rebar, E. J. and Pabo, C. O. (1994) Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 263, 671-673 https://doi.org/10.1126/science.8303274
  14. Cheng, X., Boyer, J. L., and Juliano, R. L. (1997) Selection of peptides that functionally replace a zinc finger in the Sp1 transcription factor by using a yeast combinatorial library. Proc. Natl. Acad. Sci. USA 94, 14120-14125 https://doi.org/10.1073/pnas.94.25.14120
  15. Blancafort, P., Magnenat, L., and Barbas, C. F. (2003) Scanning the human genome with combinatorial transcription factor libraries. Nat. Biotechnol. 21, 269-274 https://doi.org/10.1038/nbt794
  16. Wolfe, S. A., Grant, R. A., Elrod-Erickson, M., and Pabo, C. O. (2001) Beyond the 'recognition code': structures of two Cys2His2 zinc finger/TATA box complexes. Structure 9, 717-723 https://doi.org/10.1016/S0969-2126(01)00632-3
  17. Jamieson, A. C., Kim, S.-H., and Wells, J. A. (1994) In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry 33, 5689-5695 https://doi.org/10.1021/bi00185a004
  18. Wang, M. M. and Reed, R. R. (1993) Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 364, 121-126 https://doi.org/10.1038/364121a0
  19. Jamieson, A. C., Miller, J. C., and Pabo, C. O. (2003) Drug discovery with engineered zinc-finger proteins. Nat. Rev. Drug Discov. 2, 361-368 https://doi.org/10.1038/nrd1087
  20. Dreier, B., Beerli, R. R., Segal, D. J., Flippin, J. D., and Barbas, C. F. (2001) Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 276, 29466-29478 https://doi.org/10.1074/jbc.M102604200
  21. Lee, D.-k., Seol, W., and Kim, J. S. (2003) Custom DNAbinding proteins and artificial transcription factors. Curr. Top. Med. Chem. 3, 645-657 https://doi.org/10.2174/1568026033452384
  22. Paillard, G., Deremble, C., and Lavery, R. (2004) Looking into DNA recognition: zinc finger binding specificity. Nucleic Acids Res. 32, 6673-6682 https://doi.org/10.1093/nar/gkh1003
  23. Magnenat, L., Blancafort, P., and Barbas, C. F. (2004) In vivo selection of combinatorial libraries and designed affinity maturation of polydactyl zinc finger transcription factors for ICAM-1 provides new insights into gene regulation. J. Mol. Biol. 341, 635-649 https://doi.org/10.1016/j.jmb.2004.06.030
  24. Greisman, H. A. and Pabo, C. O. (1997) A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 275, 657-661 https://doi.org/10.1126/science.275.5300.657
  25. Bae, K.-H., Kwon, Y. D., Shin, H.-C., Hwang, M.-S., Ryu, E.-H., et al. (2003) Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat. Biotech. 21, 275-280 https://doi.org/10.1038/nbt796
  26. Tan, S., Guschin, D., Davalos, A., Lee, Y. L., Snowden, A. W., et al. (2003) Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc. Natl. Acad. Sci. USA 100, 11997-12002 https://doi.org/10.1073/pnas.2035056100