Preparation of Uniform Porous Carbon from Mesophase Pitch and Its Characteristics of Catalyst Support for the Direct Methanol Fuel Cell

메조페이스 핏치로부터 균질한 다공성 탄소 제조 및 이를 이용한 직접 메탄올 연료전지의 촉매 담지체 특성

  • Nam, Ki-Don (Advanced Energy Research Department, Korea Institute of Energy Research) ;
  • Kim, Tae-Jin (Advanced Energy Research Department, Korea Institute of Energy Research) ;
  • Kim, Sang-Kyung (Advanced Energy Research Department, Korea Institute of Energy Research) ;
  • Lee, Byoung-Rok (Advanced Energy Research Department, Korea Institute of Energy Research) ;
  • Peck, Dong-Hyun (Advanced Energy Research Department, Korea Institute of Energy Research) ;
  • Ryu, Seung-Kon (Department of Chemical Engineering, Chungnam National University) ;
  • Jung, Doo-Hwan (Advanced Energy Research Department, Korea Institute of Energy Research)
  • 남기돈 (한국에너지기술연구원 신에너지연구부) ;
  • 김태진 (한국에너지기술연구원 신에너지연구부) ;
  • 김상경 (한국에너지기술연구원 신에너지연구부) ;
  • 이병록 (한국에너지기술연구원 신에너지연구부) ;
  • 백동현 (한국에너지기술연구원 신에너지연구부) ;
  • 유승곤 (충남대학교 화학공학과) ;
  • 정두환 (한국에너지기술연구원 신에너지연구부)
  • Received : 2006.02.14
  • Accepted : 2006.03.15
  • Published : 2006.04.10

Abstract

Pore-size controlled porous carbons for the catalyst supports of the direct methanol fuel cell were prepared from the mesophase pitch by using the silica spheres with different sizes. Pitch solution in THF and spheres were mixed, carbonized and etched by 5 M NaOH to make porous carbon. Specific surface area of the porous carbons was $14.7{\sim}87.7m^2/g$ and average pore diameter was 50~550 nm which were dependent on the size of silica spheres. Aqueous reduction method was used to load 60 wt% PtRu on the prepared porous carbon supports. The electro-oxidation activity of the supported 60 wt% Pt-Ru catalysts was measured by cyclic voltammetry and unit cell test. For the 60 wt% Pt-Ru/porous carbon synthesized by 50 nm silica, current density value in the cyclic voltammetry test was $123mA/cm^2$ at 0.4 V and peak power density in the unit cell test were 105 and $162mW/cm^2$ under oxygen at 60 and $80^{\circ}C$, respectively.

Acknowledgement

Supported by : 산업자원부

References

  1. G. Cacciola, V. Antonucci, and S. Freni, J. Power Sources, 100, 67 (2001) https://doi.org/10.1016/S0378-7753(01)00884-9
  2. K. Scott, W. M. Taama, and P. Argyropoulos, J. Power Sources, 79, 43 (1999) https://doi.org/10.1016/S0378-7753(98)00198-0
  3. A. Heinzel and V. M. Barragan, J. Power Sources, 84, 70 (1999) https://doi.org/10.1016/S0378-7753(99)00302-X
  4. M. Watanabe and S. Motoo, J. Electroanal. Chem., 60, 259 (1975) https://doi.org/10.1016/S0022-0728(75)80260-9
  5. B. Rajesh, V. Karthik, S. Karthikeyan, K. R. Thampi, J. M. Bonard, and B. Viswanathan, Fuel, 81, 2177 (2002) https://doi.org/10.1016/S0016-2361(02)00162-X
  6. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater., 13, 677 (2001) https://doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
  7. G. S. Chai, S. B. Yoon, S. Kang, J. H. Choi, Y. E. Sung, Y. S. Ahn, H. S. Kim, and J. S. Yu, Electrochim. Acta, 50, 823 (1992) https://doi.org/10.1016/j.electacta.2003.11.041
  8. M. E. Beauharnois, D. D. Edie, and M. C. Thies, Carbon, 39, 2101 (2001) https://doi.org/10.1016/S0008-6223(01)00045-8
  9. S. P. Jones, C. C. Fain, and D. D. Edie, Carbon, 35, 1533 (1997) https://doi.org/10.1016/S0008-6223(97)00106-1
  10. K. Osseo-Asare and F. J. Arriagada, Colloids and Surfaces, 50, 321 (1990) https://doi.org/10.1016/0166-6622(90)80273-7
  11. T. Kawaguchi, W. Sugimoto, Y. Murakami, and Y. Takasu, J. Catalysis, 229, 176 (2005) https://doi.org/10.1016/j.jcat.2004.10.020
  12. L. D. Burke and J. K. Casey, Electrochim. Acta, 37, 1817 (1992) https://doi.org/10.1016/0013-4686(92)85086-Z
  13. D. A. J. Rand and R. Woods, J. Electroanal. Chem., 36, 57 (1972) https://doi.org/10.1016/S0022-0728(72)80445-5
  14. A. G. Okunev, S. A. Shaurman, A. F. Danilyuk, Yu. I. Aristov, G. Bergeret, and A. Renuprez, J. Non-Crystalline Solids, 260, 21 (1999) https://doi.org/10.1016/S0022-3093(99)00568-2
  15. P. Allongue, H. Brune, and H. Gerischer, Surf. Sci., 275, 414 (1992) https://doi.org/10.1016/0039-6028(92)90814-M
  16. G. L. Messing, K. S. Mazdiyasni, J. W. McCauley, and R. A. Haber, Ceramic Powder Sci., 21, 121 (1987)
  17. Y. Lee, C. W. Lee, H. S. Kang, Y. H. Jang, and Y. M. Hahm, Appl. Chem., 1, 398 (1997)
  18. T. Poppe, Icarus, 164, 139 (2003) https://doi.org/10.1016/S0019-1035(03)00137-4
  19. D. Dutta, S. Chatterjee, K. T. Pillai, P. K. Pujari, and B. N. Ganguly, Phys. Chem., 312, 319 (2005) https://doi.org/10.1016/j.chemphys.2004.12.008
  20. E. Antolini and F. Cardellini, J. Alloys and Compounds, 315, 118 (2001) https://doi.org/10.1016/S0925-8388(00)01260-3
  21. H. Daimon and Y. Kurobe, Catalysis Today, 111, 182 (2006) https://doi.org/10.1016/j.cattod.2005.10.023
  22. M. Watanabe, S. Saegusa, and P. Stonehart, J. Electroanal. Chem., 271, 213 (1989) https://doi.org/10.1016/0022-0728(89)80076-2
  23. T. J. Kim and C. K. Park, J. Korean Ind. Eng. Chem., 11, 40 (2000)