Preparation of Organophilic MMT Modified with Various Aromatic Amines and Characterization of Polyimide Nanocomposite Films

다양한 구조의 방향족 아민으로 개질된 친유기성 MMT의 제조와 이를 이용한 폴리이미드 나노복합필름의 특성

  • Han, Seung San (Department of Fiber and Polymer Engineering, Hanyang University) ;
  • Choi, Kil-Yeong (Polymeric Nanomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Im, Seung Soon (Department of Fiber and Polymer Engineering, Hanyang University) ;
  • Kim, Yong Seok (Polymeric Nanomaterials Laboratory, Korea Research Institute of Chemical Technology)
  • 한승산 (한양대학교 섬유고분자공학과) ;
  • 최길영 (한국화학연구원 고분자나노소재연구팀) ;
  • 임승순 (한양대학교 섬유고분자공학과) ;
  • 김용석 (한국화학연구원 고분자나노소재연구팀)
  • Received : 2005.12.26
  • Accepted : 2006.02.02
  • Published : 2006.04.10

Abstract

In this work, we have prepared organophilic MMT having thermal stability by ion exchange reaction of various aromatic ammonium salts with MMT containing sodium ion. The organic modifiers having alkyl side chains and amine functional group were successfully synthesized by effectively introducing the surfaces of MMT via ion exchange reaction to form organophilic MMTs with a view to improve the reactivity and thermal stability. The WAXD patterns of organophilic MMT showed the more increased gallery spacing by $3.3{\AA}$ than that of the pristine MMT and also the onset of initial decomposition of organophilic MMT was $275^{\circ}C$ as determined by a thermogravimetric analysis. The polyimide (PI) nanocomposite films based on poly(amic acid) and organophilic MMT were prepared by a solution blending followed by cyclodehydration reaction. We have investigated the dispersity of organophilic MMTs in PI matrix by using WAXD and the effect of the organophilic MMT content on the mechanical properties of PI nanocomposite films was studied.

Acknowledgement

Supported by : 한국화학연구원, 과학기술부

References

  1. H. L. Tyan, Y. C. Liu, and K. H. Wei, Chem. Mater., 11, 1942 (1999) https://doi.org/10.1021/cm990187x
  2. D. S. Thompson, D. W. Thompson, and R. E. Southward, Chem. Mater., 14, 30 (2002) https://doi.org/10.1021/cm000855a
  3. J. H. Chang, D. K. Park, and K. J. Ihn, J. Appl. Polym. Sci., 84, 2294 (2002) https://doi.org/10.1002/app.10519
  4. D. M. Delozier, R. A. Orwoll, J. F. Cahoon, N. J. Johnston, J. G. Smith Jr, and J. W. Connell, Polymer, 43, 813 (2002) https://doi.org/10.1016/S0032-3861(01)00640-1
  5. Y. S. Choi, M. H. Choi, K. H. Wang, S. O. Kim, Y. K. Kim, and I. J. Chung, Macromolecules, 34, 8978 (2001) https://doi.org/10.1021/ma0106494
  6. A. Zhang, X. Li, C. Nah, K. Hwang, and M. H. Lee, J. Appl. Polym. Sci., 41, 24 (2003)
  7. H. L. Tyan, C. M. Leu, and K. H. Wei, Chem. Mater., 13, 222 (2001) https://doi.org/10.1021/cm000560x
  8. C. M. Leu, Z. W. Wu, and K. H. Wei, Chem. Mater., 14, 3016 (2002) https://doi.org/10.1021/cm0200240
  9. S. G. Lyu, D. Y. Park, Y. S. Kim, Y. C. Lee, and G. S. Sur, Polymer(Korea), 26, 375 (2002)
  10. R. K. Bharadwaj, Macromolecules, 34, 9189 (2001) https://doi.org/10.1021/ma010780b
  11. R. A. Vaia, K. D. Jaudt, E. J. Kramer, and E. P. Giannelis, J. Polym. Sci. Polym. Chem., 33, 1047 (1995) https://doi.org/10.1002/pola.1995.080330707
  12. P. B. Messersmith and E. P. Giannelis, J. Polym. Sci. Polym. Chem., 33, 1047 (1995) https://doi.org/10.1002/pola.1995.080330707
  13. D. C. Lee and W. J. Lee, J. Appl. Polym. Sci., 61, 1117 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1117::AID-APP7>3.0.CO;2-P
  14. S. U. Lee, I. H. Oh, J. H. Lee, K. Y. Choi, and S. G. Lee, Polymer (Korea), 29, 271 (2005)