PAN계 ACF의 최적 활성화 공정에 따른 흡착특성과 나노입자 첨착에 의한 SO2 흡착특성

The Adsorption Characteristics by the Optimun Activation Process of PAN-based Carbon Fiber and SO2 Adsorption Characteristics by the Impregnated Nanoparticles

  • 이진채 (한양대학교 공과대학 응용화학공학과) ;
  • 김영채 (한양대학교 공과대학 응용화학공학과)
  • Lee, Jin-Jae (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Young-Chai (Department of Chemical Engineering, Hanyang University)
  • 투고 : 2006.07.28
  • 심사 : 2006.09.05
  • 발행 : 2006.10.10

초록

탄화 및 활성화 조건을 매개체로 여러 등급의 Polyacrylonitrile (PAN)계 ACF (ACF : Activated Carbon Fiber)를 제조하여 최적의 비표면적을 나타내는 활성화 공정을 알아보았고, 가장 큰 비표면적을 갖는 PAN계 ACF에 대한 표면특성 및 독성가스 등에 대한 흡착특성을 분석하였다. 시험결과 활성화 온도가 증가할수록 비표면적이 증가하고 탄화 온도가 감소할수록 비표면적이 감소하였고, $900^{\circ}C$로 15 min간 탄화한 후 $900^{\circ}C$로 30 min간 활성화 공정을 거친 ACF가 $1204m^2/g$의 가장 높은 비표면적을 나타내었고 요오드 및 테러용 독성가스에 대한 흡착 성능시험 결과 기존의 흡착제보다 우수하였다. 또한 선택적 흡착을 위한 기능성을 부여하기 위하여 기존의 금속염을 침적하는 방법을 대체하여 비교적 안정화된 금속나노입자(Ag, Pt, Cu, Pd)를 제조하여 첨착하였고 이에 대한 표면특성 및 $SO_{2}$에 대한 흡착특성을 분석하였다. 금속나노입자 첨착 ACF에 대한 $SO_{2}$ 흡착성능 시험결과 Ag, Pt, Cu 나노입자를 첨착한 ACF는 무첨착 ACF의 파과시간(326 sec)과 비교 할 때 크게 변함이 없었으나 Pd 나노입자를 첨착한 ACF는 파과시간이 925 sec로 $SO_{2}$ 흡착성능이 매우 우수함을 알 수 있었다.

참고문헌

  1. M. Suzuki, Adsortion Engineering, ed. J. Y. Son, 1, 24, Hyung sul, Seoul (2000)
  2. Z. Ryu, J. Zheng, M. Wang, and B. Zang, J. Colloid Interface Science, 230, 312 (2000) https://doi.org/10.1006/jcis.2000.7078
  3. I. Martin-Gullon, R. Andrews, M. Jagoyen, and F. Derbyshire, Fuel, 80, 969 (2001) https://doi.org/10.1016/S0016-2361(00)00186-1
  4. S. J. Park and K. D. Kim, Carbon, 39, 1741 (2001) https://doi.org/10.1016/S0008-6223(00)00305-5
  5. W. C. Oh and Y. S. Lee, J. Korean Ind. Eng. Chem, 11, 212 (2000)
  6. D. A. Bulushev, I. Yuranov, E. I. Suvorova, P. A. Buffat, and L. Kiwi-Minsker J. Catal., 224, 8 (2004) https://doi.org/10.1016/j.jcat.2004.02.014
  7. M. M. Dubinin, Progress in Surface and Membrane Science, 1, 340, Academic Press, New York
  8. J. B. Donnet, Carbon Fibers, ed Jean. Baptiste, 1, 250, Marccel Dekker, New York (1998)
  9. M. Suzuki, Adsortion Engineering, ed. J. Y. Son, 1, 15, Hyung sul, Seoul (2000)
  10. U. Matatov-Meytal and M. Sheintuch, Catalysis Today, 102, 121 (2005) https://doi.org/10.1016/j.cattod.2005.02.015
  11. M. Suzuki, Carbon, 32, 577 (1994) https://doi.org/10.1016/0008-6223(94)90075-2
  12. S. Brunauer, L. S. Deming, W. S. Deming, and E. Teller, J. Amer. Chem. Soc., 62, 1723 (1940) https://doi.org/10.1021/ja01864a025
  13. M. Yoshikawa, A. Yasutake, and I. Mochida, Appl. Catal. A, 173, 239 (1998) https://doi.org/10.1016/S0926-860X(98)00182-3
  14. W. C. Oh and C. S. Park, J. Ceramic Processing Research, 7, 37 (2006)
  15. S. Lowell and J. E. Shields, Powder Surface Area and Porosity, 1, 13, Chapman and Hall, New York (1984)
  16. C. C. Leng and N. G. Pinto, Carbon, 35, 1375 (1997) https://doi.org/10.1016/S0008-6223(97)00091-2
  17. S. J. Greggs and K. S. W. Sing, Adsorption, Surface Area and Porosity, 1, 41, Academic Press, New York
  18. Z. Bashir, Carbon, 29, 181 (1991)