Preparation and Properties of Soluble Polyimide with Methacryloyl Group

Methacryloyl기를 함유한 가용성 폴리이미드의 합성과 감광 특성

  • Yoon, Keun-byoung (Department of Polymer Science, Engineering College, Kyungpook National University) ;
  • Son, Hyung-jun (Chemicals & Polymers Business Unit, LG Chem, Ltd.) ;
  • Lee, Dong-ho (Department of Polymer Science, Engineering College, Kyungpook National University)
  • 윤근병 (경북대학교 공과대학 고분자공학과) ;
  • 손형준 ((주)LG화학 화성사업부) ;
  • 이동호 (경북대학교 공과대학 고분자공학과)
  • Received : 2006.02.10
  • Accepted : 2006.03.17
  • Published : 2006.04.10

Abstract

Polyimides have been investigated extensively and used widely over the past three decades because of their high performance properties such as excellent thermal, mechanical, and electrical properties. Polyimides are difficult to be processed because of the aromatic moieties, imide group, and insoluble nature in most organic solvents. The soluble polyimides were synthesized from 2,2,-bis(3-amino-4-hydroxyphenyl) hexafluoropropane (BAPAF) and 3,3,-diamino-4,4-dihydroxybyphenyl (HAB) as aromatic diamines and 4,4-(hexafluoroisopropylidene)diphthalic dianhydride (6FDA), pyromellitic dianhydride (PMDA), 4,4-oxydiphthalic dianhydride (OPDA), 3,3,4,4-benzophenone tetracarboxylic dianhydride (BTDA) and 3,3,4,4-diphenylsulfone tetracarboxylic dianhydride (DSDA) as aromatic dianhydrides. The polyimides were characterized by NMR, FR-IR, TGA and the dielectric constant of the obtained polyimides was calculated from storage of electro-capacity. A novel photosensitive polyimide was synthesized by the reaction of polyimide, containing hydroxyl group and methacryloyl chloride using triethylamine. The good micro-pattern was obtained with photosensitive polyimide from the photolithographic technique.

References

  1. D. Wilson, H. D. Stengenberger, and P. M. Hergenrother, Polyimide, Chapman & Hall, New York (1990)
  2. D. D. Denton, D. R. Day, D. F. Prioref, S. D. Senturia, E. S. Anolick, and D. Scheider, J. Electron. Mater., 14, 119 (1985) https://doi.org/10.1007/BF02656671
  3. R. A. Laesen, J. Res. Devel., 24, 268 (1980) https://doi.org/10.1147/rd.243.0268
  4. A. M. Wilson, IBM Thin Solid Films, 83, 145 (1981) https://doi.org/10.1016/0040-6090(81)90661-1
  5. E. Sacher and J. R. Susko, J. Appl. Polym. Sci., 26, 679 (1981) https://doi.org/10.1002/app.1981.070260226
  6. F. W. Harris, S. H. Lin, F. Li, and S. Z. D. Cheng, Polymer, 22, 5049 (1996)
  7. S. Y. Koo, D. H. Lee, H. J. Choi, and K. Y. Choi, J. Appl. Polym. Sci., 61, 1197 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1197::AID-APP15>3.0.CO;2-V
  8. F. Li, J. J. Ge, P. S. Honigfort, S. Fang, J. C. Chen, F. W. Harris, and S. Z. D. Cheng, Polymer, 40, 4987 (1999) https://doi.org/10.1016/S0032-3861(98)00721-6
  9. H. Ahne, L. Ranier, and R. Rubner, Polym. Adv. Technol., 4, 217 (1993) https://doi.org/10.1002/pat.1993.220040402
  10. T. A. Chen, A. K. Y. Jen, and Y. M. Cai, Macromolecules, 29, 535 (1996) https://doi.org/10.1021/ma9512566
  11. D. H. Lee. S. Y. Koo, H. S. Lee, W. S. Kim, K. E. Min, L. S. Park, I. K. Kang, K. S. Seo, and H. J. Choi, J. Appl. Polym. Sci., 85, 38 (2002) https://doi.org/10.1002/app.10528
  12. Z. D. Stephen, TRIP, 1, 243 (1993)
  13. D. M. Stoakley, A. K. St. Clair, and C. I. Croall, J. Appl. Polym. Sci., 51, 1479 (1994) https://doi.org/10.1002/app.1994.070510815
  14. S. Li and F. E. Karasz, J. Appl. Polym. Sci., 47, 753 (1993) https://doi.org/10.1002/app.1993.070470501
  15. D. Kumar, J. Polym. Sci. Polym. Chem. Ed., 18, 1375 (1980) https://doi.org/10.1002/pol.1980.170180421
  16. E. Sacher, J. Macromol. Sci. Phys. Ed., 25, 405 (1986) https://doi.org/10.1080/00222348608248048
  17. D. D. Denton, Proceedings of ISA Moisture Humidity Conferences, Washington DC, 505 (1985)
  18. F. W. Mercer and T. D. Goodman, Polym. Preprints, 32, 189 (1991)
  19. G. Hougham, G. Tesoro, A. Viehbeck, and J. D. Chapple-Sokol, Macromolecules, 27, 5964 (1994) https://doi.org/10.1021/ma00099a006
  20. J. J. Shingh and A. Eftekhari, NASA Tech. Memo., 86431, 1 (1985)