Solid-Liquid Mass Transfer in Gas-Solid-Liquid 3-Phase System Agitated Vessel

기 - 액 - 고 3상계 교반조내의 고-액간 물질이동

  • Lee, Young Sei (School of Applied Chemical Engineering, Sangju National University) ;
  • Kato, Yoshihito (Department of Life & Material Engineering, Nagoya Institute of Technology) ;
  • Suzuki, Junichiro (Department of Life & Material Engineering, Nagoya Institute of Technology)
  • 이영세 (상주대학교 응용화학공학부) ;
  • 加藤禎人 (일본 나고야공업대학 생명물질공학과) ;
  • 鈴木純一郞 (일본 나고야공업대학 생명물질공학과)
  • Received : 2006.07.20
  • Accepted : 2006.09.06
  • Published : 2006.10.10

Abstract

The solid-liquid mass transfer coefficients $k_L$ in a gas-liquid-solid three phases agitated vessel were measured with conventional impellers (e.g. Rushton turbine, paddle, and propeller). For the conventional impellers the rotational speed for the complete suspension $N_{js}$ changes with the impeller height and gas flow rate. Mass transfer coefficient of the Rushton turbin impeller, for which the particle suspension was independent of the aeration, is correlated only with Pgv. Mass transfer coefficients $k_L$ for the Rushton turbine, paddle and propeller impellers were affected by the impeller position.

Keywords

mass transfer coefficients;rotational speed for complete suspension;aeration power consumption;agitation power consumption;conventional impellers

Acknowledgement

Supported by : 상주대학교

References

  1. P. H. Calderbank and M. B. Moo-Young, Chem. Eng. Sci., 16, 39 (1961) https://doi.org/10.1016/0009-2509(61)87005-X
  2. Y. Sano, N. Yamaguchi, and T.Adachi, J. Chem. Eng. Japan, 7, 255(1974) https://doi.org/10.1252/jcej.7.255
  3. S. Hiraoka, Y. Tada, H. Suzuki, H. Mori, T. Aragaki, and I. Yamada, J. Chem. Eng. Japan, 23, 468 (1990) https://doi.org/10.1252/jcej.23.468
  4. G. Baldi, R. Conti, and E. Alaria, Chem. Eng. Sci., 33, 21 (1978) https://doi.org/10.1016/0009-2509(78)85063-5
  5. A. W. Nienow, Can. J. Chem. Eng., 47, 248 (1969) https://doi.org/10.1002/cjce.5450470316
  6. F. Grisafi, B. Alberto, and R. Lucio, Can. J. Chem. Eng., 76, 446 (1998) https://doi.org/10.1002/cjce.5450760315
  7. Y. Ohyama and K. Endo, Kagaku Kogaku, 20, 576 (1956) https://doi.org/10.1252/kakoronbunshu1953.20.576
  8. T. Oishi, S. Hiraoka, Y. Kato, Y. Tada, J. Yano, and T. Yamaguchi, Kagaku Kogaku Ronbunshu, 24, 392 (1998) https://doi.org/10.1252/kakoronbunshu.24.392
  9. D. N. Miller, Ind. Eng. Chem. Process Des. Develop., 10, 365 (1971) https://doi.org/10.1021/i260039a015
  10. M. W. Chudacek, Chem. Eng. Sci., 40, 385 (1985) https://doi.org/10.1016/0009-2509(85)85100-9
  11. D. M. Levins and J. R. Glastonbuly, Trans. IChemE, 50, 132 (1972)
  12. R. C. Chapman, A. W. Nienow, M. Cooke, and J. C. Middleton, Trans. Inst. Chem. Engrs., 59, 134 (1981)
  13. Y. Kato, S. Hiraoka, Y. Tada, T. Shirota, S. T. Koh, Y. S. Lee, and T. Yamaguchi, Kagaku Kogaku Ronbunshu, 21, 5, 948 (1995) https://doi.org/10.1252/kakoronbunshu.21.948
  14. G. M. Marrone and D. J. Kirwan, AICHE J., 32, 523 (1986) https://doi.org/10.1002/aic.690320324
  15. J. S. Newman, Electrochemical system -Second Edition, 241-264, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA (1991)
  16. T. N. Zwitering, Chem. Eng. Sci., 8, 244 (1958) https://doi.org/10.1016/0009-2509(58)85031-9
  17. K. Kikuchi, Y. Tadakuma, T. Sugawar, et al., J. Chem. Eng. Japan, 20, 134 (1987b) https://doi.org/10.1252/jcej.20.134
  18. K. Sato, T. Menju, M. Mochizuki, and A. Shono, Kagaku Kogaku Ronbunshu, 21, 137 (1995) https://doi.org/10.1252/kakoronbunshu.21.137
  19. A. W. Nienow, Chem. Eng. Sci., 23, 1453 (1968) https://doi.org/10.1016/0009-2509(68)89055-4