Analysis of Hybrid Emulsion Surfaces by the Phase Lag Mapping Atomic Force Microscopy

위상지연 원자간력 현미경법에 의한 혼성 에멀젼 표면의 분석

  • Han, Sang-Hoon (Department of Chemical Engineering, Dong-A University) ;
  • Kim, Jong-Min (Department of Chemical Engineering, Dong-A University) ;
  • Park, Dong-Won (Department of Chemical Engineering, Dong-A University)
  • 한상훈 (동아대학교 화학공학과) ;
  • 김종민 (동아대학교 화학공학과) ;
  • 박동원 (동아대학교 화학공학과)
  • Received : 2006.04.17
  • Accepted : 2006.06.30
  • Published : 2006.08.10

Abstract

We applied a new analyzing technique for the polyurethane acrylate hybrid emulsion sample composed of polyurethane resin and acrylate resin using the phase-lag mapping techniques of atomic force microscopy. For the analysis, we synthesized similarly sized pure polyurethane dispersion and acrylate emulsion particles, which were used for measuring the standard phase-lag intensities for each material. Based on these signal intensity, we could discriminate acryl particle in the polyurethane dispersion matrix with the resolution of a few tens of nanometers. Thus, the techniques show a new possibility in the analysis of the organic two-phase particles, and we believe the techniques are helpful to design organic particles.

Acknowledgement

Supported by : 동아대학교

References

  1. S. M. Chang, H. J. Lee, J. M. Kim, and H. Muramatsu, Prospectives Ind. Chem., 2, 52 (1999)
  2. J. M. Kim, H. S. Jung, J. W. Park, Y. Tetsuo, and O. Hiroaki, J. Am. Chem. Soc., 127, 2358 (2005) https://doi.org/10.1021/ja046169k
  3. S. J. Hanley, J. Giasson, J. F. Revoi, and D. G. Gray, Polymer, 33, 4639 (1992) https://doi.org/10.1016/0032-3861(92)90426-W
  4. G. Krausch, M. Hipp, M. Blau, O. Marti, and J. Mlynek, Macromolecules, 28, 260 (1995) https://doi.org/10.1021/ma00105a034
  5. R. van den Berg, H. de Groot, and M. A. van Dijk, Polymer, 35, 5778 (1994) https://doi.org/10.1016/S0032-3861(05)80056-4
  6. D. Park, B. Keszler, V. Galiatsatos, and J. P. Kenedy, Macromolecules, 28, 2595 (1995) https://doi.org/10.1021/ma00112a001
  7. W. Saito, O. Mori, Y. Ikeo, M. Kawaguchi, T. Imae, and T. Kato, Macromolecules, 28, 7945 (1995) https://doi.org/10.1021/ma00127a049
  8. C. H. Cho, H. D. Seo, B. H. Min, H. K. Cho, S. T. Noh, H. G. Choi, Y. H. Cho, and J. H. Kim, J. Korean Ind. Eng. Chem., 13, 825 (2002)
  9. U. S. Patent 5,173,526 (1992)
  10. J. Y. Kim, D. H. Shin, K. J. Ihn, and K. D. Suh, J. Ind. Eng. Chem., 9, 37 (2003)
  11. H. S. Choi, S. T. Noh, and K. B. Choi J. Ind. Eng. Chem., 5, 52 (1999)
  12. C. Hare, J. Protective Coat., 10, 69 (1993)
  13. Y. Tezuka, S. Nobe, and T. Shiomi, Macromolecules, 28, 8251 (1995) https://doi.org/10.1021/ma00128a040
  14. L. M. Sergeeva, S. I. Skiba, and L. V. Karabanova, Polym. Int., 39, 317 (1996) https://doi.org/10.1002/(SICI)1097-0126(199604)39:4<317::AID-PI499>3.0.CO;2-O
  15. J. G. Park, J. Y. Kim, and K. D. Suh, J. Appl Polym. Sci., 69, 2291 (1998) https://doi.org/10.1002/(SICI)1097-4628(19980912)69:11<2291::AID-APP22>3.0.CO;2-0
  16. Y. Zhang, R. J. Heath, and D. J. Hourston, J. Appl. Polym. Sci., 75, 406 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000118)75:3<406::AID-APP10>3.0.CO;2-B
  17. S. Dadbin and R. P. Chaplin, J. Appl. Polym. Sci., 81, 3361 (2001) https://doi.org/10.1002/app.1792
  18. J. M. Kim, H. S. Jung, J. W. Park, H. Y. Lee, and T. Kawai, Anal. Chem. Acta, 525, 151 (2004) https://doi.org/10.1016/j.aca.2004.08.034
  19. M. Argaman, R. Golan, N. H. Thomson, and H. G. Hansma, Nucl. Acids. Res., 25, 4379 (1997) https://doi.org/10.1093/nar/25.21.4379
  20. A. Noy, C. Frisbie, L. F. Rozsnyai, Mark S. Wrighton, and C. M. Lieber, J. Am. Chem. Soc., 117, 7943 (1995) https://doi.org/10.1021/ja00135a012
  21. S. H. Han and D. W. Park, J. Korean Ind. Eng. Chem., 17, 132 (2006)