Functions and Power Laws of Critical Micelle Concentration with Respect to Temperature

임계 마이셀 농도의 온도 함수와 지수 법칙

  • 임경희 (중앙대학교 화학공학과) ;
  • 김홍운 (효성 중앙연구소) ;
  • 강계홍 ((주)아모레퍼시픽 기술연구원)
  • Received : 2006.06.09
  • Accepted : 2006.07.31
  • Published : 2006.10.10

Abstract

Micelles have been used in many applications. In these applications it is of prime importance to know how the critical micelle concentration (CMC), above which the micelles are formed, depends on temperature. Up to date polynomial functions of temperature have been used to describe temperature dependence of CMC. In this article it is shown that such polynomials are inadequate tools to express thermal behavior of CMC. Hence, new equations of CMC(T) have been derived on the basis of rigorous thermodynamic equations and experimental observations on CMCs. The new equations fit CMC data excellently, and further they lead to a power law for the CMC. The exponent of the power-law expression is 2 irrespective of surfactant systems, which points to the generality of newly found equations.

Keywords

micellization;critical micelle concentration;tempeature dependence

Acknowledgement

Supported by : 한국과학기술기획평가원

References

  1. T. Sun and J. Y. Ying, Nature, 389, 704 (1997) https://doi.org/10.1038/39549
  2. S. A. Bragshaw, E. Prouzet, and T. J. Pinnavaia, Science, 269, 1242 (1995) https://doi.org/10.1126/science.269.5228.1242
  3. Y. Moroi, Micelles: Theoretical and Applied Aspects, Chapter 11, Plenum, New York (1992)
  4. B. D. Flockhart, J. Colloid Sci., 16, 484 (1961) https://doi.org/10.1016/0095-8522(61)90026-5
  5. E. H. Crook, D. B. Fordyce, and G. F. Trebbi, J. Phys. Chem., 67, 1987 (1963) https://doi.org/10.1021/j100804a010
  6. La Mesa, C., Z. A. Ranieri, and M. Terenzi, J. Surface Sci. Tech., 6, 151 (1990)
  7. C. La Mesa, J. Phys. Chem., 94 323 (1990) https://doi.org/10.1021/j100364a054
  8. G. C. Kresheck and W. A. Hargraves, J. Colloid Interface Sci., 48, 481 (1974) https://doi.org/10.1016/0021-9797(74)90193-3
  9. B. Madan and B. Lee, Biophys. Chem., 51, 279 (1994) https://doi.org/10.1016/0301-4622(94)00049-2
  10. G. Sugihara and M. Hisatomi, J. Colloid Interface Sci., 219, 31 (1999) https://doi.org/10.1006/jcis.1999.6378
  11. V. Mosquera, J. M. del Rip, D. Attwood, M. Garcia, M. N. Jones, G. Prieto, M. J. Suarez, and F. Sarmiento, J. Colloid Interface Sci., 206, 66 (1998) https://doi.org/10.1006/jcis.1998.5708
  12. G. Sugihara and M. Hisatomi, J. Colloid Interface Sci., 219, 31 (1999) https://doi.org/10.1006/jcis.1999.6378
  13. H. Morawetz, Adv. Catal., 20, 341 (1969) https://doi.org/10.1016/S0360-0564(08)60276-X
  14. K.-H. Kang, H.-U. Kim, Lim, K.-H., Colloid Surface A, 189, 113 (2001) https://doi.org/10.1016/S0927-7757(01)00577-5
  15. B. Lindman and H. Wennerstrom, Topics in Current Chemistry, vol. 87, Springer-Verlag, Berlin (1980)
  16. H.-U. Kim and K.-H. Lim, Bull. Korean Chem. Soc., 24, 1449 (2003) https://doi.org/10.5012/bkcs.2003.24.10.1449
  17. R. Lumry and S. Rajender, Biopolym., 9, 1125 (1970) https://doi.org/10.1002/bip.1970.360091002
  18. K.-H. Lim, manuscript in preparation
  19. J. A. Stead and H. J. Taylor, J. Colloid Interface Sci., 30, 482 (1969) https://doi.org/10.1016/0021-9797(69)90417-2
  20. P. Taboada, D. Attwood, M. Garcia, M. N. Jones, J. M. Ruso, V. Mosquera, and F. Sarmiento, J. Colloid Interface Sci., 221, 242 (2000) https://doi.org/10.1006/jcis.1999.6586
  21. N. B. Stasiuk and L. L. Schramm, J. Colloid Interface Sci., 324 , 178 (1996)
  22. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Hresge, K. D. Smith, T.-W. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schenker, J. Am. Chem. Soc., 114, 10834 (1992) https://doi.org/10.1021/ja00053a020
  23. La Mesa, C., Colloid Polym. Sci., 268, 959 (1990) https://doi.org/10.1007/BF01469375
  24. H.-U. Kim and K.-H. Lim, Kor. J. Oil Chem. Soc., 18, 325 (2001)
  25. N. Muller, Langmuir 9, 96 (1993) https://doi.org/10.1021/la00025a022
  26. C. Jolicoeur and R. P. Philip, Can. J. Chem., 52, 1834 (1974) https://doi.org/10.1139/v74-262
  27. M. Fugiwara, T. Okano, T-H. Nakashima, A. A. Nakamura, and H. Sugihara, Colloid Polym. Sci., 275, 474 (1977) https://doi.org/10.1007/s003960050106
  28. P. Becher, in M. J. Schick (Ed.), Nonionic Surfactants, Marcel Dekker, New York (1967)
  29. M. P. Pileni, Langmuir, 13, 3266 (1997) https://doi.org/10.1021/la960319q
  30. La Mesa, C., Colloid Surf., 3, 329 (1989) https://doi.org/10.1016/0166-6622(81)80060-1
  31. H.-U. Kim and K.-H. Lim, Colloid Surface A, 235, 121 (2004) https://doi.org/10.1016/j.colsurfa.2003.12.019
  32. S. Paula, W. Sus, J. Tuchtenhagen, and A. Blume, J. Phys. Chem., 99, 11742 (1995) https://doi.org/10.1021/j100030a019
  33. S. J. Gill, N. F. Nichols, and I. Wadso, J. Chem. Thermodynamics, 8, 445 (1976) https://doi.org/10.1016/0021-9614(76)90065-3
  34. D. Attwood, E. Boitard, J.-P. Dubes, and H. Tachoire, J. Colloid Interface Sci., 227, 356 (2000) https://doi.org/10.1006/jcis.2000.6908
  35. B. Jonsson, B. Lindman, K. Holmberg, and B. Kronberg, Surfactants and Polymers in Aqueous Solution, John Wiley and Sons, New York (1997), p. 84
  36. L.-J. Chen, S.-Y. Lin, C.-C. Huang, and E.-M. Chen, Colloid Surf. A, 135, 175 (1998) https://doi.org/10.1016/S0927-7757(97)00238-0
  37. J. H. Fendler, Membrane Mimetic Approach to Advanced Materials, Springer-Verlag, Berlin (1992)
  38. A. Kiraly and I. Dekany, J. Colloid Interface Sci., 242, 214 (2002) https://doi.org/10.1006/jcis.2001.7777
  39. J. H. Fendler, Membrane Mimetic Chemistry, Characterizations and Applications of Micelles, Microemulsion, Monolayers, Bilayers, Vesicles, Host-Guest Systems and Polyions, John Wiley, New York (1982)
  40. D. D. Miller, L. J. Magid, and D. F. Evans, J. Phys. Chem., 94, 5921 (1990) https://doi.org/10.1021/j100378a058
  41. V. C. Krishnan and L. H. Friedman, J. Solution Chem., 2, 37 (1974) https://doi.org/10.1007/BF00645870
  42. K.-H. Lim, Colloids, Interfaces, and Polymers (Lecture Note) (2005)
  43. D. Mukergee and K. J. Mysels, Critical Micelle Concentrations of Aqueous Surfactant Systems, NSRDS-NBS 36 (1971)
  44. J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed., Academic Press, San Diego (1992), p. 381
  45. Y. Lu, R. Ganguli. C. A. Drewien, M. T. Anderson, C. J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M. H. Huang, and J. I. Zink, Nature, 389, 364 (1997) https://doi.org/10.1038/38699
  46. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature, 359, 710 (1992) https://doi.org/10.1038/359710a0
  47. V. Tomasic, A. Chittofrati, and N. Kallay, Colloid Surf. A, 104, 95 (1995) https://doi.org/10.1016/0927-7757(95)03260-K
  48. H.-U. Kim, Ph. D. Dissertation, Chung-Ang University (2002)
  49. M. A. Fox, Res. Chem. Intermed., 15, 153 (1991) https://doi.org/10.1163/156856791X00048
  50. http://akunger1.chemie.uni-maiz.de/Allan/Welcome.html
  51. P. Gilli, V. Ferretti, G. Gilli, and P. A. Borea, J. Phys. Chem. 98, 1515 (1993)