Membrane Topology of Helix 0 of the Epsin N-terminal Homology Domain

  • Kweon, Dae-Hyuk (Department of Genetic Engineering, Faculty of Life Science and Technology, Sungkyunkwan University) ;
  • Shin, Yeon-Kyun (Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University) ;
  • Shin, Jae Yoon (Department of Genetic Engineering, Faculty of Life Science and Technology, Sungkyunkwan University) ;
  • Lee, Jong-Hwa (School of Bioresource Sciences, Andong National University) ;
  • Lee, Jung-Bok (School of Bioresource Sciences, Andong National University) ;
  • Seo, Jin-Ho (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Yong Sung (Department of Biotechnology, Ajou University)
  • Received : 2006.04.02
  • Accepted : 2006.05.22
  • Published : 2006.06.30

Abstract

Specific interaction of the epsin N-terminal homology(ENTH) domain with the plasma membrane appears to bridge other related proteins to the specific regions of the membrane that are invaginated to form endocytic vesicles. An additional $\alpha$-helix, referred to as helix 0 (H0), is formed in the presence of the soluble ligand inositol-1,4,5-trisphosphate [$Ins(1,4,5)P_3$] at the N terminus of the ENTH domain (amino acid residues 3-15). The ENTH domain alone and full-length epsin cause tubulation of liposomes made of brain lipids. Thus, it is believed that H0 is membrane-inserted when it is coordinated with the phospholipid phosphatidylinositol-4,5-bisphosphate [$PtdIns(4,5)P_2$], resulting in membrane deformation as well as recruitment of accessory factors to the membrane. However, formation of H0 in a real biological membrane has not been demonstrated. In the present study, the membrane structure of H0 was determined by measurement of electron paramagnetic resonance (EPR) nitroxide accessibility. H0 was located at the phosphate head-group region of the membrane. Moreover, EPR line-shape analysis indicated that no pre-formed H0-like structure were present on normal acidic membranes. $PtdIns(4,5)P_2$ was necessary and sufficient for interaction of the H0 region with the membrane. H0 was stable only in the membrane. In conclusion, the H0 region of the ENTH domain has an intrinsic ability to form H0 in a $PtdIns(4,5)P_2$-containing membrane, perhaps functioning as a sensor of membrane patches enriched with $PtdIns(4,5)P_2$ that will initiate curvature to form endocytic vesicles.

Keywords

Endocytosis;ENTH;EPR;Epsin;Helix 0;Membrane Binding;Phosphatidylinositol-4,5-Bisphosphate

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Brasseur, R., Cornet, B., Burny, A., Vandenbranden, M., and Ruysschaert, J. M. (1988) Mode of insertion into a lipid membrane of the N-terminal HIV gp41 peptide segment. AIDS Res. Hum. Retroviruses 4, 83-90 https://doi.org/10.1089/aid.1988.4.83
  2. Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C., and Wakeham, D. E. (2001) Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol. 17, 517-568 https://doi.org/10.1146/annurev.cellbio.17.1.517
  3. De Camilli, P., Chen, H., Hyman, J., Panepucci, E., Bateman, A., et al. (2002) The ENTH domain. FEBS Lett. 513, 11-18 https://doi.org/10.1016/S0014-5793(01)03306-3
  4. Epand, R. M., Hui, S. W., Argan, C., Gillespie, L. L., and Shore, G. C. (1986) Structural analysis and amphiphilic properties of a chemically synthesized mitochondrial signal peptide. J. Biol. Chem. 261, 10017-10020
  5. Itoh, T., Koshiba, S., Kigawa, T., Kikuchi, A., Yokoyama, S., et al. (2001) Role of the ENTH domain in phosphatidylinositol- 4,5-bisphosphate binding and endocytosis. Science 291, 1047- 1051 https://doi.org/10.1126/science.291.5506.1047
  6. Kweon, D. H., Kim, C. S., and Shin, Y. K. (2003) Regulation of neuronal SNARE assembly by the membrane. Nat. Struct. Biol. 10, 440-447 https://doi.org/10.1038/nsb928
  7. Legendre-Guillemin, V., Wasiak, S., Hussain, N. K., Angers, A., and McPherson, P. S. (2004) ENTH/ANTH proteins and clathrin-mediated membrane budding. J. Cell Sci. 117, 9-18 https://doi.org/10.1242/jcs.00928
  8. Schmidt, A. A. (2002) Membrane transport: the making of a vesicle. Nature 419, 347-349 https://doi.org/10.1038/419347a
  9. Stahelin, R. V., Long, F., Peter, B. J., Murray, D., De Camilli, P., et al. (2003) Contrasting membrane interaction mechanisms of AP180 N-terminal homology (ANTH) and epsin Nterminal homology (ENTH) domains. J. Biol. Chem. 278, 28993-28999 https://doi.org/10.1074/jbc.M302865200
  10. Yu, Y. G., Thorgeirsson, T. E., and Shin, Y. K. (1994) Topology of an amphiphilic mitochondrial signal sequence in the membrane-inserted state: a spin labeling study. Biochemistry 33, 14221-14226 https://doi.org/10.1021/bi00251a034
  11. Brett, T. J., Traub, L. M., and Fremont, D. H. (2002) Accessory protein recruitment motifs in clathrin-mediated endocytosis. Structure (Camb). 10, 797-809 https://doi.org/10.1016/S0969-2126(02)00784-0
  12. Higgins, M. K. and McMahon, H. T. (2002) Snap-shots of clathrin-mediated endocytosis. Trends Biochem. Sci. 27, 257- 263 https://doi.org/10.1016/S0968-0004(02)02089-3
  13. Macosko, J. C., Kim, C. H., and Shin, Y. K. (1997) The membrane topology of the fusion peptide region of influenza hemagglutinin determined by spin-labeling EPR. J. Mol. Biol. 267, 1139-1148 https://doi.org/10.1006/jmbi.1997.0931
  14. Ford, M. G., Mills, I. G., Peter, B. J., Vallis, Y., Praefcke, G. J., et al. (2002) Curvature of clathrin-coated pits driven by epsin. Nature 419, 361-366 https://doi.org/10.1038/nature01020
  15. McHaourab, H. S., Kalai, T., Hideg, K., and Hubbell, W. L. (1999) Motion of spin-labeled side chains in T4 lysozyme: effect of side chain structure. Biochemistry 38, 2947-2955 https://doi.org/10.1021/bi9826310
  16. Han, X. and Tamm, L. K. (2000) A host-guest system to study structure-function relationships of membrane fusion peptides. Proc. Natl. Acad. Sci. USA 97, 13097-13102 https://doi.org/10.1073/pnas.230212097
  17. Altenbach, C., Marti, T., Khorana, H. G., and Hubbell, W. L. (1990) Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science 248, 1088-1092 https://doi.org/10.1126/science.2160734
  18. Columbus, L. and Hubbell, W. L. (2002) A new spin on protein dynamics. Trends Biochem. Sci. 27, 288-295 https://doi.org/10.1016/S0968-0004(02)02095-9
  19. Kinuta, M., Yamada, H., Abe, T., Watanabe, M., Li, S. A., et al. (2002). Phosphatidylinositol 4,5-bisphosphate stimulates vesicle formation from liposomes by brain cytosol. Proc. Natl. Acad. Sci. USA 99, 2842-2847 https://doi.org/10.1073/pnas.261715599
  20. Wendland, B. (2002) Epsins: adaptors in endocytosis? Nat. Rev. Mol. Cell Biol. 3, 971-977 https://doi.org/10.1038/nrm970
  21. Rabenstein, M. and Shin, Y. K. (1995) A peptide from the heptad repeat of human immunodeficiency virus gp41 shows both membrane binding and coiled-coil formation. Biochemistry 34, 13390-13397 https://doi.org/10.1021/bi00041a016
  22. Hyman, J., Chen, H., Di Fiore, P. P., De Camilli, P., and Brunger, A. T. (2000) Epsin 1 undergoes nucleocytosolic shuttling and its eps15 interactor NH(2)-terminal homology (ENTH) domain, structurally similar to Armadillo and HEAT repeats, interacts with the transcription factor promyelocytic leukemia Zn(2)+ finger protein (PLZF). J. Cell Biol. 149, 537-546 https://doi.org/10.1083/jcb.149.3.537
  23. Altenbach, C., Greenhalgh, D. A., Khorana, H. G., and Hubbell, W. L. (1994) A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 91, 1667-1671 https://doi.org/10.1073/pnas.91.5.1667
  24. Chen, H., Fre, S., Slepnev, V. I., Capua, M. R., Takei, K., et al. (1998) Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394, 793-797 https://doi.org/10.1038/29555
  25. Itoh, T. and Takenawa, T. (2004) Regulation of endocytosis by phosphatidylinositol 4,5-bisphosphate and ENTH proteins. Curr. Top Microbiol. Immunol. 282, 31-47
  26. Kirchhausen, T. (2000a) Clathrin. Annu. Rev. Biochem. 69, 699- 727 https://doi.org/10.1146/annurev.biochem.69.1.699
  27. Kirchhausen, T. (2000b) Three ways to make a vesicle. Nat. Rev. Mol. Cell. Biol. 1, 187-198 https://doi.org/10.1038/35043117
  28. Huang, S., Lifshitz, L., Patki-Kamath, V., Tuft, R., Fogarty, K., et al. (2004) Phosphatidylinositol-4,5-bisphosphate-rich plasma membrane patches organize active zones of endocytosis and ruffling in cultured adipocytes. Mol. Cell. Biol. 24, 9102- 9123 https://doi.org/10.1128/MCB.24.20.9102-9123.2004
  29. Koshiba, S., Kigawa, T., Kikuchi, A., and Yokoyama, S. (2002) Solution structure of the epsin N-terminal homology (ENTH) domain of human epsin. J. Struct. Funct. Genomics 2, 1-8 https://doi.org/10.1023/A:1011397007366
  30. Nossal, R. and Zimmerberg, J. (2002) Endocytosis: curvature to the ENTH degree. Curr. Biol. 12, R770-772 https://doi.org/10.1016/S0960-9822(02)01289-7
  31. Ford, M. G., Pearse, B. M., Higgins, M. K., Vallis, Y., Owen, D. J., et al. (2001) Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051-1055 https://doi.org/10.1126/science.291.5506.1051
  32. Chen, H., Slepnev, V. I., Di Fiore, P. P., and De Camilli, P. (1999) The interaction of epsin and Eps15 with the clathrin adaptor AP-2 is inhibited by mitotic phosphorylation and enhanced by stimulation-dependent dephosphorylation in nerve terminals. J. Biol. Chem. 274, 3257-3260 https://doi.org/10.1074/jbc.274.6.3257
  33. Han, X., Bushweller, J. H., Cafiso, D. S., and Tamm, L. K. (2001) Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat. Struct. Biol. 8, 715-720 https://doi.org/10.1038/90434
  34. Brodin, L., Low, P., and Shupliakov, O. (2000) Sequential steps in clathrin-mediated synaptic vesicle endocytosis. Curr. Opin. Neurobiol. 10, 312-320 https://doi.org/10.1016/S0959-4388(00)00097-0
  35. Shin, Y. K., Levinthal, C., Levinthal, F., and Hubbell, W. L. (1993) Colicin E1 binding to membranes: time-resolved studies of spin-labeled mutants. Science 259, 960-963 https://doi.org/10.1126/science.8382373
  36. McHaourab, H. S., Lietzow, M. A., Hideg, K., and Hubbell, W. L. (1996) Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry 35, 7692-7704 https://doi.org/10.1021/bi960482k
  37. Russell, C. J., Thorgeirsson, T. E., and Shin, Y. K. (1999) The membrane affinities of the aliphatic amino acid side chains in an alpha-helical context are independent of membrane immersion depth. Biochemistry 38, 337-346 https://doi.org/10.1021/bi981179h