A Statistical-Mechanical Model on the Temperature Dependence of Critical Micelle Concentration

임계 마이셀 농도의 온도 의존성에 대한 통계 역학적 모델

  • Lim, Kyung-Hee (School of Chemical Engineering & Materials Science, Chung-Ang Uiversity) ;
  • Kang, Kye-Hong (R&D Center, Amorepacific Corporation) ;
  • Lee, Mi-Jin (School of Chemical Engineering & Materials Science, Chung-Ang Uiversity)
  • 임경희 (중앙대학교 화학.신소재 공학부) ;
  • 강계홍 ((주)아모레퍼시픽 기술연구원) ;
  • 이미진 (중앙대학교 화학.신소재 공학부)
  • Received : 2006.08.17
  • Accepted : 2006.10.20
  • Published : 2006.12.10

Abstract

Dependence of the critical micelle concentration (CMC) on temperature is examined from a statistical-mechanical point of view. A simple and primitive model examined in this article yields ln CMC= A+BT+C/T+D ln T with T being temperature and A, B, C, D being constants depending on the properties of the surfactant molecules which comprise the micelles. The resulting equation combines Muller's and Lim's equations, which have already been proven to fit well measured CMC data with temperature. The statistical-mechanical model on micellization discussed in this article provides a theoretical basis on these equations.

Keywords

micellization;critical micelle concentration (CMC);temperature dependence

Acknowledgement

Supported by : 한국과학기술기획평가원

References

  1. D. C. Poland and H. A. Scheraga, J. Phys. Chem., 69, 2431 (1965);D. C. Poland and H. A. Scheraga, J. Phys. Chem., 69, 4425 (1965)
  2. D. C. Poland and H. A. Scheraga, J. Colloid Interface Sci., 21, 273 (1966) https://doi.org/10.1016/0095-8522(66)90012-2
  3. J. M. Corkill, J. F. Goodman, and S. P. Harrold, Trans. Faraday Soc., 60, 202 (1964) https://doi.org/10.1039/tf9646000202
  4. H.-U. Kim and K.-H. Lim, Colloids Surf. A, 235, 121 (2004) https://doi.org/10.1016/j.colsurfa.2003.12.019
  5. K.-H. Lim, Statistical Thermodynamics, in preparation (2006)
  6. R. R. Balmbra, J. S. Clunie, and J. M. Corkill, Trans. Faraday Soc., 60, 979 (1964) https://doi.org/10.1039/tf9646000979
  7. K.-H. Kang, H.-U. Kim, and K.-H. Lim, Colloids Surf. A, 189, 113 (2001) https://doi.org/10.1016/S0927-7757(01)00577-5
  8. P. Becher, Nonionic Surfactants, ed. M. J. Schick, Surfactant Science Series Vol. 1, Marcel Dekker, New York, 1966
  9. A. Goto, M. Takemoto, and F. Endo, Bull. Chem. Soc. Japan, 58, 247 (1985) https://doi.org/10.1246/bcsj.58.247
  10. N. Muller, Lagmuir, 9, 96 (1993) https://doi.org/10.1021/la00025a022
  11. G. Nemethy and H. A. Scheraga, J. Phys. Chem., 66, 1773 (1962) https://doi.org/10.1021/j100816a004
  12. C. Tanford, The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd ed., Krieger, Malabar (1980)
  13. M. S. Bakshi, A. Kaura, and R. K. Mahajan, Colloids Surf. A, 262, 168 (2004) https://doi.org/10.1016/j.colsurfa.2005.04.027