Synthesis of Chromium Nitride and Evaluation of its Catalytic Property

크롬 질화물(CrN)의 합성 및 촉매특성에 관한 연구

  • Lee, Yong-Jin (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Kwon, Heock-Hoi (Department of Chemical and Environmental Engineering, Soongsil University)
  • 이용진 (숭실대학교 환경화학공학과) ;
  • 권혁회 (숭실대학교 환경화학공학과)
  • Received : 2006.03.28
  • Accepted : 2006.06.19
  • Published : 2006.10.10

Abstract

We synthesized phase pure CrN having surface areas up to $47m^2/g$ starting from $CrCl_{3}$ with $NH_{3}$. Thermal Gravimetric Analysis coupled with X-ray diffraction was carried out to identify solid state transition temperatures and the phase after each transition. In addition, the BET surface areas, pore size distributions, and crystalline diameters for the synthesized materials were analyzed. Space velocity influenced a little to the surface areas of the prepared materials, while heating rate did not. We believe it is due to the fast removal of reaction by-products from the system. Temperature programmed reduction results revealed that the CrN was hardly passivated by 1% $O_{2}$. Molecular nitrogen was detected from CrN at 700 and $950^{\circ}C$, which may be from lattice nitrogen. In temperature programmed oxidation with heating rate of 10 K/min in flowing air, oxidation started at or higher than $300^{\circ}C$ and resulting $Cr_{2}O_{3}$ phase was observed with XRD at around $800^{\circ}C$. However the oxidation was not completed even at $900^{\circ}C$. CrN catalysts were highly active for n-butane dehydrogenation reaction. Their activity is even higher than that of a commercial $Pt-Sn/Al_{2}O_{3}$ dehydrogenation catalyst in terms of volumetric reaction rate. However, CrN was not active in pyridine hydrodenitrogenation.

Keywords

CrN;temperature programmed reaction;butane dehydrogenation;metal nitride

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. J. Choi, J. R. Brenner, C. W. Colling, B. G. Demczyk, J. Dunning, and L. T. Thompson, Catal. Today, 15, 201 (1992) https://doi.org/10.1016/0920-5861(92)80176-N
  2. D. J. Sajkowski and S. T. Oyama, ACS Prep., Div. Petrol. Chem., 35, 233 (1990)
  3. J. C. Schlatter, S. T. Oyama, J. E. Metcalfe, and J. M. Lambert, Ind. Eng. Chem. Res., 27, 1648 (1988) https://doi.org/10.1021/ie00081a014
  4. L. Leclerq, K. Imura, S. Yoshida, T. Barbee, and M. Boudart, in Preparation of Catalysts II, ed. B. Delmon, p. 627, Elsevier, New York (1979)
  5. B. Dhandapani, S. Ramanathan, C. C. Yu, B. Fruhberger, J. G. Chen, and S. T. Oyama, J. Catal., 176, 61 (1998) https://doi.org/10.1006/jcat.1998.2004
  6. H. Kwon, L. T. Thompson, J. Jr. Eng, and J. G. Chen, J. Catal., 190, 60 (2000) https://doi.org/10.1006/jcat.1999.2749
  7. M. Aguas, A. Nartowski, I. Parkin, M. MacKensi, and A. Craven, J. Mater. Chem., 8, 1875 (1998) https://doi.org/10.1039/a802149j
  8. R. B. Levy and M. Boudart, Science, 181, 547 (1973) https://doi.org/10.1126/science.181.4099.547
  9. M. Hirai, Y. Ueno, T. Suzuki, and W. Jiang, Jpn. J. Appl. Phys., 40, 1052 (2001) https://doi.org/10.1143/JJAP.40.1052
  10. J. Choi, J. R. Brenner, and L. T. Thompson, J. Catal. 154, 33 (1995) https://doi.org/10.1006/jcat.1995.1143
  11. C. J. Brinker, J. Am. Ceram. Soc., 65, C4 (1982)
  12. K. E. Curry, Ph. D. Dissertation, The University of Michigan, Ann Arbor, USA (1995)
  13. I. Milosev, H.-H. Strehblow, and B. Navinsek, Thin Solid Films, 303, 246 (1997) https://doi.org/10.1016/S0040-6090(97)00069-2
  14. P. Subramanya Herle, M. S. Hegde, N. Y. Vasathacharya, S. Philip, M. V. Rama Rao, and T. Sripathi, J. Solid State Chem., 134, 120 (1997) https://doi.org/10.1006/jssc.1997.7554
  15. R. Kapoor and S. T. Oyama, J. Solid State Chem., 99, 303 (1992)
  16. E. J. Markel and J. W. Van Zee, J. Catal., 126, 643 (1990) https://doi.org/10.1016/0021-9517(90)90027-H
  17. S. T. Oyama, Catal. Today, 15, 179 (1992) https://doi.org/10.1016/0920-5861(92)80175-M
  18. Japan Patent JP 02221126 (1989)
  19. L. Volpe and M. Boudart, J. Phys. Chem., 90, 4874 (1986) https://doi.org/10.1021/j100411a031
  20. J. G. Chen, and B. Fruhberger, M. D. Weisel, J. E. Baumgartner, and B. D. DeVries, in The Chemistry of Transition Metal Carbides and Nitrides, ed. S.T. Oyama, Blackie Academia and Professional, Glasgow (1996)
  21. H. Kwon, S. Choi, and L. T. Thompson, J. Catal., 184, 236 (2000)
  22. P. Subramanya Herle, M. Hegde, N. Vasathacharya, and S. Philip, J. Solid State Chem., 134, 120 (1997) https://doi.org/10.1006/jssc.1997.7554
  23. M. Neylon, S. Choi, C. Kendrick, H. Kwon, and L. T. Thompson, Appl. Catal. A. Catal., 183, 253 (1999) https://doi.org/10.1016/S0926-860X(99)00053-8
  24. H. Kwon, Ph. D. Dissertation, The University of Michigan, Ann Arbor, USA (1998)
  25. T. Sato, K. Usuki. A. Okuwaki, and Y. Goto, J. Mater. Sci., 27, 3879 (1992) https://doi.org/10.1007/BF00545471
  26. H. O. Mulfinger, J. Am. Ceram. Soc., 49, 462 (1966) https://doi.org/10.1111/j.1151-2916.1966.tb13300.x