Fenton Degradation of Highly Concentrated Fe(III)-EDTA in the Liquid Waste Produced by Chemical Cleaning of Nuclear Power Plant Steam Generators

펜톤 반응을 이용한 원전 증기발생기 화학세정 폐액의 고농도 Fe(III)-EDTA 분해

  • Jo, Jin-Oh (Department of Chemical Engineering, Cheju National University) ;
  • Mok, Young Sun (Department of Chemical Engineering, Cheju National University) ;
  • Kim, Seok Tae (Korea Electric Power Research Institute) ;
  • Jeong, Woo Tae (Korea Electric Power Research Institute) ;
  • Kang, Duk-Won (Korea Electric Power Research Institute) ;
  • Rhee, Byong-Ho (Vitzrotech Co., Ltd.) ;
  • Kim, Jin Kil (Vitzrotech Co., Ltd.)
  • 조진오 (제주대학교 청정화학공학과) ;
  • 목영선 (제주대학교 청정화학공학과) ;
  • 김석태 (한국전력공사 전력연구원) ;
  • 정우태 (한국전력공사 전력연구원) ;
  • 강덕원 (한국전력공사 전력연구원) ;
  • 이병호 (비츠로테크(주)) ;
  • 김진길 (비츠로테크(주))
  • Received : 2006.08.07
  • Accepted : 2006.09.06
  • Published : 2006.10.10


An advanced oxidation process catalyzed by iron ions in the presence of hydrogen peroxide, the so-called Fenton's reaction, has been applied to the treatment of steam generator chemical cleaning waste containing highly concentrated iron(III)- ethyl-enediaminetetraaceticacid (Fe(III)-EDTA) of 70000 mg/L. The experiments for the degradation of Fe(III)-EDTA were carried out not only with a simulated waste, but also with the real one. The effect of pH and the amount of hydrogen peroxide added to the waste on the degradation was examined, and the results were discussed in several aspects. The optimal pH to maximize the degradation efficiency was dependent on the amount of hydrogen peroxide added to the waste. i.e., when the amount of hydrogen peroxide was different, maximum degradation efficiency was obtained at different pH's. The optimal amount of hydrogen peroxide relative to that of Fe(III)-EDTA was found to be 24.7 mol ($H_{2}O_{2}$)/mol (Fe(III)-EDTA) at pH around 9.


steam generator chemical cleaning waste;Fe(III)-EDTA;Fenton


Supported by : 산업자원부


  1. C. A. Emilio, W. F. Jardim, M. I. Litter, and H. D. Mansilla, J. Photochem. Photobiol. A: Chem., 151, 121 (2002) https://doi.org/10.1016/S1010-6030(02)00173-9
  2. E. Gilbert and S. Hoffmann-Glewe, Water Res., 24, 39 (1990) https://doi.org/10.1016/0043-1354(90)90062-B
  3. E.-H. Park, J. Jung, and H.-H. Chung, Chemosphere, 64, 432 (2006) https://doi.org/10.1016/j.chemosphere.2005.11.017
  4. Y.-K. Kim, S. A. Kim, S. B. Lee, J. K. Kim, and D.-W. Kang, Plasma Proc. Polymers, 2, 252 (2005)
  5. S. H. Lee, H. J. Moon, and Y. M. Kim, J. Korean Soc. Water Wastewater, 17, 87 (2003)
  6. Y.-S. Kim, S.-H. Kong, S.-Y. Bae, and G.-C. Hwang, J. Korean Ind. Eng. Chem., 12, 755 (2001)
  7. C. Walling, R. E. Partch, and T. Weil, Proc. Nat. Acad. Sci. USA, 72, 140 (1975)
  8. D.-W. Kang, B.-H. Rhee, and S. B. Park, Technology for Treating Non-Biodegradable Wastewater Using the Integrated Plasma System, Research Report 02NK01, Korea Electric Power Research Institute (2005)
  9. C. L. Hsueh, Y. H. Huang, C. C. Wang, and C. Y. Chen, Chemosphere, 58, 1409 (2005) https://doi.org/10.1016/j.chemosphere.2004.09.091
  10. M. D. Tucker, L. L. Barton, B. M. Thomson, B. M. Wagener, and A. Aragon, Waste Management, 19, 477 (1999) https://doi.org/10.1016/S0956-053X(99)00235-4
  11. D. Jiraroj, F. Unob, and A. Hagege, Water Res., 40, 107 (2006) https://doi.org/10.1016/j.watres.2005.10.041
  12. J. B. Rodríguez, A. Mutis, M. C. Yeber, J. Freer, J. Baeza, and H. D. Mansilla, Water Sci. Technol., 40, 267 (1999) https://doi.org/10.1016/S0273-1223(99)00727-1
  13. G. Ghiselli, W. F. Jardim, M. I. Litter, and H. D. Mansilla, J. Photochem. Photobiol. A: Chem., 167, 59 (2004) https://doi.org/10.1016/j.jphotochem.2004.02.005
  14. H. Lim, K. C. Namkung, and J. Yoon, J. Korean Ind. Eng. Chem., 16, 9 (2005)
  15. I. Yeo, S. Yoo, and H. Park, Proc. Korean Soc. Environ. Eng. Spring Meeting, pp.284-290 (2005)
  16. E. Guivarch, S. Trevin, C. Lahitte, and M. A. Oturan, Environ. Chem. Letters, 1, 38 (2003) https://doi.org/10.1007/s10311-002-0017-0