Synthesis and Physical Properties of MO·Fe12O18 (M/Ba and Sr) Nanoparticles Prepared by Sol-Gel Method Using Propylene Oxide

Propylene Oxide를 이용한 졸-겔법에 의한 MO·Fe12O18 (M/Ba, Sr) 나노 분말의 합성과 물리적 특성

  • Lee, Su Jin (Department of Chemical System Engineering, Keimyung University) ;
  • Choe, Seok Burm (Department of Chemical System Engineering, Keimyung University) ;
  • Gwak, Hyung Sub (Department of Chemical System Engineering, Keimyung University) ;
  • Paik, Seunguk (Department of Chemical System Engineering, Keimyung University)
  • 이수진 (계명대학교 화학시스템공학과) ;
  • 최석범 (계명대학교 화학시스템공학과) ;
  • 곽형섭 (계명대학교 화학시스템공학과) ;
  • 백승욱 (계명대학교 화학시스템공학과)
  • Received : 2006.06.09
  • Accepted : 2006.07.27
  • Published : 2006.08.10

Abstract

Nano sized mixed metal hexagonal ferrite powders with improved magnetic properties have been prepared by sol-gel method using propylene oxide as a gelation agent. To obtain the desired ferrite, two different metal ions were used. One of the ions has only +2 formal charge. The key step in the processes is that hydrated $Ba^{2+}$ or $Sr^{2+}$ ions are hydrolyzed and condensed at the surface of the previously formed $Fe_{2}O_{3}$ gel. In this processes, all the reaction can be finished within a few minutes. The magnetic properties of the produced powder were improved by heat treatment. The highest values of the magnetic properties were achieved at temperature $150^{\circ}C$ lower than those of the previously published values. The highest observed values of coercivity and the saturation magnetization of Sr-ferrite and Ba-ferrite powder were 6198 Oe, 5155 Oe and 74.4 emu/g, 68.1 emu/g, respectively. The ferrite powder annealed at $700^{\circ}C$ showed spherical particle shapes. The resulting spheres which were formed by the aggregation of nanoparticles with size 3~5 nm have diameter around 50 nm. The powder treated at $800^{\circ}C$ showed hexagonal-shaped grains with crystallite size above 500 nm.

References

  1. V. Adelskold, Arkiv for kemi Mineralogi och Geologi, A-12(29), 1 (1938)
  2. J. J. Went and H. P. J. Wijn, Philips Tech. Rev., 13, 194 (1952)
  3. A. Cochardt, J. Appl. Phys., 34, 1273 (1963) https://doi.org/10.1063/1.1729468
  4. P. Gerard, E. Lacroix, G. Marest, B. Blanchard, G. Rolland, B. Rolland, and B. Bechevet, Solid State Commu., 71, 57 (1989) https://doi.org/10.1016/0038-1098(89)90172-5
  5. S. W. Lee, S. Y. An, S. J. Kim, I. Shim, and C. S. Kim, IEEE Transactions on Magnetics, 39, 5 (2003)
  6. S. C. Nam and G. J. Kim, J. Korean Ind. Eng. Chem., 15, 183 (2004)
  7. H. Cui, M. Zayat, and D. Levy, Journal of Non-crystalline Solids, 285, 2102 (2005)
  8. A. E. Gash, T. M, Tillotson, J. H. Satcher Jr., L. W. Hrubesh, and R. L. Simpson, Journal of Non-crystalline Solids, 285, 22 (2001) https://doi.org/10.1016/S0022-3093(01)00427-6
  9. W. Zhong, J. Magn. Magn. Mater., 168, 196 (1997) https://doi.org/10.1016/S0304-8853(96)00664-6
  10. M. Matsumoto, A. Morisako, T. Hawiwa, K. Naruse, and T. Karasawa, IEEE Trans. Magn., 6, 648 (1991) https://doi.org/10.1109/TJMJ.1991.4565229
  11. L. Duraes, B. F. O. Costa, J. Vasques, J. Campos, and A. Portugal, Materials Letters, 59, 859 (2005) https://doi.org/10.1016/j.matlet.2004.10.066
  12. H. W. Kwon and J. W. Bae, J. Magn., 118, 8 (2003)
  13. Y. P. Fu, C. H. Lin, and K. Y. Pan, Jpn. J. Appl. Phys, 42, 2681 (2003) https://doi.org/10.1143/JJAP.42.2681
  14. S. Y. Ahn, S. W. Lee, D. H. Choe, and C. S. Kim, J. Kor. Mag. Soc., 13, 4 (2003)
  15. C. V. Santilli, M. Onillon, and J. P. Bonnet, Ceram. Int. 16, 89 (1990) https://doi.org/10.1016/0272-8842(90)90078-T
  16. H. Kojima, Ferromagnetic Materials, North-Holland, Amsterdam, 3, 335 (1982)
  17. G. Mendoza-Suarez, M. C. Cisneros-Morales, M. M. Cisneros-Guerrero, K. K. Johal, H. Mancha-Molinar, O. E. Ayala-Valenzuela, and J. I. Escalante-García, Materials Chemistry and Physics, 77, 796 (2002) https://doi.org/10.1016/S0254-0584(02)00141-4