A Study on the Decomposition Characteristics of PVC and PS Mixtures with ZnO in Air Atmosphere

공기분위기에서 ZnO를 첨가한 PVC와 PS 혼합물의 분해특성에 관한 연구

  • Oh, Sea Cheon (Department of Environmental Engineering, Kongju National University) ;
  • Jung, Myung Uk (Department of Chemical Engineering, Hanyang University) ;
  • Jun, Hyun-Chul (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Hee Taik (Department of Chemical Engineering, Hanyang University) ;
  • Lee, Hae Pyeong (School of Fire & Disaster Prevention, Kangwon National University)
  • 오세천 (공주대학교 공과대학 환경공학과) ;
  • 정명욱 (한양대학교 공과대학 화학공학과) ;
  • 전현철 (한양대학교 공과대학 화학공학과) ;
  • 김희택 (한양대학교 공과대학 화학공학과) ;
  • 이해평 (강원대학교 소방방재학부)
  • Received : 2006.01.26
  • Accepted : 2006.03.20
  • Published : 2006.04.10


The effect of ZnO in the decomposition of poly(vinyl chloride) (PVC) and polystyrene (PS) mixtures in air atmosphere has been studied by thermogravimetry (TG) and gas chromatograph-mass spectrometry (GC-MS) under various mixing ratios and reaction temperatures. From this work, it can be seen that the yields of a liquid product were increased with the increase of PS in mixtures, whereas those of gaseous products were decreased. And the yields of a gaseous product and HCl were decreased with the increase of ZnO in mixtures. It was also found that HCl was rarely produced at ZnO/Mixture = 0.5 by the effect of ZnO in dehydrochlorination of PVC.


  1. J. L. Easterly and M. Burnham, Biomass and Bioenergy, 10, 79 (1996) https://doi.org/10.1016/0961-9534(95)00063-1
  2. J.-K. Woo and S.-W. Kom, Waste Manage. Res., 11, 515 (1993) https://doi.org/10.1177/0734242X9301100606
  3. C.-H., Wu, C.-Y. Chang, J.-L. Hor, S.-M. Shih, L.-W. Chen, and F.-W. Chang, Waste Manage., 13, 221 (1993) https://doi.org/10.1016/0956-053X(93)90046-Y
  4. S. C. Oh, C.-Y. Lee, H. J. Jang, H. C. Jun, H. P. Lee, and H. T. Kim, J. Korean Ind. Eng. Chem., 14, 1149 (2003)
  5. K. M. Kim, Y. S. Kim, S. U. Jeong, and S. H. Kim, J. Korean Ind. Eng. Chem., 13, 583 (2002)
  6. K. R. G. Hein and J. M. Bemtgen, Fuel Processing Technology, 54, 159 (1998) https://doi.org/10.1016/S0378-3820(97)00067-2
  7. H. Spliethoff and K. R. G. Hein, Fuel Processing Technology, 54, 189 (1998) https://doi.org/10.1016/S0378-3820(97)00069-6
  8. G. Taralas and M. G. Kontominas, Fuel, 83, 1235 (2004) https://doi.org/10.1016/j.fuel.2003.11.010
  9. B.-H. Song, J. Ind. Eng. Chem., 11, 361 (2005)
  10. G. Jin, H. Iwaki, N. Arai, and K. Kitagawa, Energy, 30, 1192 (2005) https://doi.org/10.1016/j.energy.2004.08.002
  11. G. Piao, S. Aono, M. Kondoh, R. Yamazaki, and S. Mori, Waste Manage., 20, 443 (1998)
  12. H. J. So, K. H. Kim, N. S. Roh, D. H. Shin, M. S. Yi, S. K. Lee, and T. I. Ohm, J. Korea Soc. Waste Management, 19, 534 (2002)
  13. M. A. Uddin and Y. Sakata, Ind. Eng. Chem. Res., 38, 1406 (1999) https://doi.org/10.1021/ie980445k
  14. H. Ukei, T. Hirose, S. Horikawa, Y. Takai, M. Taka, N. Azuma, and A. Ueno, Catalysis Today, 62, 67 (2000) https://doi.org/10.1016/S0920-5861(00)00409-0
  15. S. C. Oh, M. U. Jung, H. T. Kim, and H. P. Lee, J. Korean Ind. Eng. Chem., 16, 513 (2005)
  16. S. J. Hong, S. C. Oh, H. P. Lee, H. T. Kim, and K. O. Yoo, HWAHAK KONGHAK, 37, 515 (1999)