Biological Hydrogen Production Processes

생물학적 수소생산 공정

  • Shin, Jong-Hwan (School of Chemical and Biological Engineering, Seoul National University) ;
  • Park, Tai Hyun (School of Chemical and Biological Engineering, Seoul National University)
  • 신종환 (서울대학교 화학생물공학부) ;
  • 박태현 (서울대학교 화학생물공학부)
  • Received : 2005.12.20
  • Accepted : 2006.02.06
  • Published : 2006.02.28

Abstract

Biological hydrogen production processes are more environment-friendly and less energy intensive than thermochemical and electrochemical processes. The biological process can be divided into two categories: photosynthetic hydrogen production and hydrogen production by dark fermentation. Photosynthetic process produces hydrogen mainly from water and reduces $CO_2$ simultaneously. Dark fermentation is a dark and anaerobic process that produces hydrogen by fermentative bacteria from organic carbon. The article presents a survey of biological hydrogen production processes.

Acknowledgement

Supported by : 과학기술부

References

  1. Suzuki, Y., 'On Hydrogen as Fuel Gas,' Int. J. Hydrogen Energy, 7(3), 227-230(1982) https://doi.org/10.1016/0360-3199(82)90085-4
  2. Bockris, J. O. M., 'The Economics of Hydrogen as a Fuel,' Int. J. Hydrogen Energy, 6(3), 223-241(1981) https://doi.org/10.1016/0360-3199(81)90041-0
  3. Vijayaraghavan, K. and Soom, M. A. M., 'Trends in Biological Hydrogen Production—a Review,' Int. J. Hydrogen Energy, in press, available online at www.sciencedirect.com(2004)
  4. Lichtl, R. R., Bazin, M. J. and Hall, D. O., 'The Biotechnology of Hydrogen Production by Nostoc Flagelliforme Grown Under Chemostat Conditions,' Appl. Microbiol. Biotechnol., 47(6), 701-707 (1997) https://doi.org/10.1007/s002530050998
  5. Hansel, A. and Lindblad, P., 'Towards Optimization of Cyanobacteria as Biotechnological Relevant Producers of Molecular Hydrogen a Clean and Renewable Energy Source,' Appl. Microbiol. Biotechnol., 50(2), 153-160(1998) https://doi.org/10.1007/s002530051270
  6. Matsunaga, T., Hatano, T., Yamada, A. and Matsumoto, M., 'Microaerobic Hydrogen Production by Photosynthetic Bacteria in a Double- Phase Photobioreactor,' Biotechnol. Bioeng., 68(6), 647-651 (2000) https://doi.org/10.1002/(SICI)1097-0290(20000620)68:6<647::AID-BIT7>3.0.CO;2-8
  7. Oh, Y.-K., Seol, E.-H., Lee, E. Y. and Park, S. H., 'Fermentative Hydrogen Production by a New Chemoheterotrophic Bacterium Rhodopseudomonas palustris P4,' Int. J. Hydrogen Energy, 27(11-12), 1373-1379(2002) https://doi.org/10.1016/S0360-3199(01)00087-8
  8. Fumiaki, T., Chang, J. D., Mizukami, N., Tatsuo, S. T. and Katsushige, H., 'Continuous Hydrogen Production by Clostridium sp. Strain No. 2 from Cellulose Hydrolysate in an Aqueous Twophase System,' J. Ferment. Bioeng., 82(1), 80-83(1996) https://doi.org/10.1016/0922-338X(96)89460-8
  9. Yokoi, H., Tokushige, T., Hirose, J., Hayashi, S. and Takasaki, Y., 'Hydrogen Production by Immobilized Cells of Aciduric Enterobacter aerogenes strain HO-39,' J. Ferment. Bioeng., 83(5) 481-484(1997) https://doi.org/10.1016/S0922-338X(97)83006-1
  10. Das, D. and Veziroglu, T.N., 'Hydrogen Production by Biological Processes: a Survey of Literature,' Int. J. Hydrogen Energy, 26(1), 13-28(2001) https://doi.org/10.1016/S0360-3199(00)00058-6
  11. Vignais, M. V., Billoud, B. and Meyer, J., 'Classification and Phylogeny of Hydrogenases,' FEMS Microbiol. Rev., 25(4), 455- 501(2001) https://doi.org/10.1111/j.1574-6976.2001.tb00587.x
  12. Adams, M. W., Mortenson, L. E. and Chen, J. S., 'Hydrogenase,' Biochim. Biophys. Acta., 594(2-3), 105-176(1980) https://doi.org/10.1016/0304-4173(80)90007-5
  13. Appel, J. and Schulz, R., 'Hydrogen Metabolism in Organisms with Oxygenic Photosynthesis: Hydrogenases as Important Regulatory Devices for a Proper Redox Poising,' J. Photochem. Photobiol. B: Biol., 47(1), 1-11(1998) https://doi.org/10.1016/S1011-1344(98)00179-1
  14. Schulz, R., 'Hydrogenases and Hydrogen Production in Eukaryotic Organisms and Cyanobacteria,' J. Mar. Biotechnol., 4, 16-22 (1996)
  15. Boichenko, V. A. and Homann, P., 'Photosynthetic Hydrogen Production in Prokaryotes and Eukaroytes: Occurrence Mechanism and Functions,' Photosynthetica., 30, 527-552(1994)
  16. Gorman, J., 'Hydrogen: the Next Generation,' Science News(2002)
  17. Melis, A., Zhang, L., Forestier, M., Ghirardi, M. L. and Seibert, M., 'Sustained Photobiological Hydrogen gas Production Upon Reversible Inactivation of Oxygen Evolution in the Green Alga Chlamydomonas reinhardtii ,' Plant Physiol., 122(1), 127-135 (2000) https://doi.org/10.1104/pp.122.1.127
  18. Hallenbeck, P. C. and Benemann, J. R., 'Biological Hydrogen Production; Fundamentals and Limiting Processes,' Int. J. Hydrogen Energy, 27(11-12), 1185-1193(2002) https://doi.org/10.1016/S0360-3199(01)00087-8
  19. Laurinavichene, T. V., Tolstygina, I. V., Galiulina, R. R., Ghirardi, M. L., Seibert, M. and Tsygankov, A. A., 'Dilution Methods to Deprive Chlamydomonas reinhardtii Cultures of Sulfur for Subsequent Hydrogen Photoproduction,' Int. J. Hydrogen Energy, 27(11-12), 1245-1249(2002) https://doi.org/10.1016/S0360-3199(01)00087-8
  20. Tsygankova, A., Kosourova, S., Seibertb, M. and Ghirardi, M. L., 'Hydrogen Photoproduction Under Continuous Illumination by Sulfur-Deprived, Synchronous Chlamydomonas reinhardtii Cultures,' Int. J. Hydrogen Energy, 27(11-12), 1239-1244(2002) https://doi.org/10.1016/S0360-3199(01)00087-8
  21. Flynn, T., Ghirardi, M. L. and Seibert, M., 'Accumulation of O2- Tolerant Phenotypes in H2-Producing Strains of Chlamydomonas reinhardtii by Sequential Applications of Chemical Mutagenesis and Selection,' Int. J. Hydrogen Energy, 27(11-12), 1421- 1430(2002) https://doi.org/10.1016/S0360-3199(01)00087-8
  22. Janssen, M. and Hoekema, S., 'Biological Hydrogen Production, 2003,' available from: www.ftns.wau.nl/prock/Research/Rene/ Photobacteria.htm, accessed 7 April(2004)
  23. Lindblad, P., Christensson, K., Lindberg, P., Fedorov, A., Pinto, F. and Tsygankov, A., 'Photoproduction of Hydrogen by Wildtype Anabaena PCC 7120 and a Hydrogen Uptake Deficient Mutant: from Laboratory Experiments to Outdoor Culture,' Int. J. Hydrogen Energy, 27(11-12), 1271-1281(2002) https://doi.org/10.1016/S0360-3199(01)00087-8
  24. Masukawa, H., Mochimaru, M. and Sakurai, H., 'Disruption of Uptake Hydrogenase Gene, but not of Bidirectional Hydrogenase Gene, Leads to Enhanced Photobiological Hydrogen Production by the Nitrogen-Fixing Cyanobacterium Anabaena sp. PCC 7120,' Appl. Microbiol. Biotechnol., 58(5), 618-624(2002) https://doi.org/10.1007/s00253-002-0934-7
  25. Troshina, O., Serebryakova, L., Sheremetieva, M. and Lindblad, P., 'Production of H2 by the Unicellular Cyanobacterium Gloeocapsa alpicola CALU 743 During Fermentation,' Int. J. Hydrogen Energy, 27(11-12), 1283-1289(2002) https://doi.org/10.1016/S0360-3199(01)00087-8
  26. Yoon, J. H., Sim, S. J., Kim, M. S. and Park, T. H., 'High Cell Density Culture of Anabaena variabilis Using Repeated Injections of Carbon Dioxide for the Production of Hydrogen,' Int. J. Hydrogen Energy, 27(11-12), 1265-1270(2002) https://doi.org/10.1016/S0360-3199(01)00087-8
  27. Koku, H., Eroglu, I., Gündüz, U., Yücel, M. and Türker, L., 'Kinetics of Biological Hydrogen Production by the Photosynthetic Bacterium Rhodobacter sphaeroides O.U. 001,' Int. J. Hydrogen Energy, 28(4), 381-388(2003) https://doi.org/10.1016/S0360-3199(02)00080-0
  28. Ko, I. B. and Noike, T., 'Use of Blue Optical Filters for Suppression of Growth of Algae in Hydrogen Producing Non-Axenic Cultures of Rhodobacter sphaeroides RV', Int. J. Hydrogen Energy, 27(11-12), 1297-1302(2002) https://doi.org/10.1016/S0360-3199(01)00087-8
  29. Lee, C. M., Chen, P. C., Wang, C. C. and Tung, Y. C., 'Photohydrogen Production Using Purple Nonsulfur Bacteria with Hydrogen Fermentation Reactor Effluent,' Int. J. Hydrogen Energy, 27(11-12), 1309-1313(2002) https://doi.org/10.1016/S0360-3199(01)00087-8
  30. Maness, P. C. and Weaver, P. F., 'Hydrogen Production from a Carbonmonoxide Oxidation Pathway in Rubrivivax Gelatinosus,' Int. J. Hydrogen Energy, 27(11-12), 1407-1411(2002) https://doi.org/10.1016/S0360-3199(01)00087-8
  31. Singh, A., Pandey, K. D. and Dubey, R. S., 'Enhanced Hydrogen Production by Coupled System of Halobacterium Halobium and Chloroplast after Entrapment Within Reverse Micelles,' Int. J. Hydrogen Energy, 24(8), 693-698(1999) https://doi.org/10.1016/S0360-3199(98)00127-X
  32. Kondo, T., Arakawa, M., Wakayama, T. and Miyake, J., 'Hydrogen Production by Combining two Types of Photosynthetic Bacteria with Different Characteristics,' Int. J. Hydrogen Energy, 27(11-12), 1303-1308(2002) https://doi.org/10.1016/S0360-3199(01)00087-8
  33. Kirk, R. E., Othmer, D. F., Grayson, M. and Eckroth, D., 'Concise Encyclopedia of Chemical Technology XIII', NewYork, Wiley-Interscience, 838-893(1985)
  34. Hart, D., 'Hydrogen Power: the Commercial Future of the Ultimate Fuel,' London, Financial Times Energy Publishing(1997)
  35. Tanisho, N., Kuromoto, M. and Kadokura, N., 'Effect of CO2 Removal on Hydrogen Production by Fermentation,' Int. J. Hydrogen Energy, 23(7), 559-563(1998) https://doi.org/10.1016/S0360-3199(97)00117-1
  36. Van Niel, E. W. J., Claassen, P. A. M. and Stams, A. J. M., 'Substrate and Product Inhibition of Hydrogen Production by the Extreme Thermophile, Caldicellulosiruptor saccharolyticus,' Biotechnol. Bioeng., 81(3), 255-262(2003) https://doi.org/10.1002/bit.10463
  37. Heyndrickx, M., Vos, P. D. and Ley, J. D., 'Fermentation Characteristics of Clostridium pasteurianum LMG 3285 Grown on Glucose and Mannitol,' J. Appl. Bacteriol., 70, 52-58(1991) https://doi.org/10.1111/j.1365-2672.1991.tb03786.x
  38. Chen, W.-M., Tseng, Z.-J., Lee, K.-S. and Chang, J.-S., 'Fermentative hydrogen production with clostridium butylicum cgs5 isolated From Anaerobic Sewage Sludge,' Int. J. Hydrogen Energy, in press, available online at www.sciencediret.com(2004)
  39. Saint-Amans, S., Girbal, L., Andrade, J., Ahrens, K. and Soucaille, P., 'Regulation of Carbon and Electron Cow in Clostridium butyricum VPI 3266 Grown on Glucose Glycerol Mixtures,' J. Bacteriol., 183(5), 1748-1754(2001) https://doi.org/10.1128/JB.183.5.1748-1754.2001
  40. Christophe, C., Nevenka, A., Jean-Paul, S., Paul, P., 'Hydrogen Production by Clostridium thermolacticum During Continuous Fermentation of Lactose,' Int. J. Hydrogen Energy, 29(14), 1479-1485(2004) https://doi.org/10.1016/j.ijhydene.2004.02.009
  41. Rachman, M. A., Furutani, Y., Nakashimada, Y. and Kakizono, T. and Nishio, N., 'Enhanced Hydrogen Production in Altered Mixed Acid Fermentation of Glucose by Enterobacter aerogenes,' J. Fermen. Bioeng., 83(4), 358-363(1997) https://doi.org/10.1016/S0922-338X(97)80142-0
  42. Yokoi, H., Ohkawara, T., Hirose, J., Hayashi, S. and Takasaki, Y., 'Characteristics of Hydrogen Production by Aciduric Enterobacter aerogenes Strain HO-39,' J. Fermen. Bioeng., 80(6), 571-574(1995) https://doi.org/10.1016/0922-338X(96)87733-6
  43. Kumar, N. and Das, D., 'Enhancement of Hydrogen Production by Enterobacter cloacae IIT-BT 08,' Process Biochem., 35(6), 589-593(2000) https://doi.org/10.1016/S0032-9592(99)00109-0
  44. Rachman, M. A., Furutani, Y., Nakashimada, Y., Kakizono, T. and Nishio, N., 'Enhanced Hydrogen Production in Altered Mixed Acid Fermentation of Glucose by Enterobacter aerogenes,' J. Fermen. Bioeng., 83(4), 358-363(1997) https://doi.org/10.1016/S0922-338X(97)80142-0
  45. Kumar, N. and Das, D., 'Continuous Hydrogen Production by Immobilized Enterobacter cloacae IIT-BT 08 Using Lignocellulosic Materials as Solid Matrices,' Enzyme Microb. Technol., 29(4-5), 280-287(2001) https://doi.org/10.1016/S0141-0229(01)00394-5
  46. Palazzi, E., Fabiano, B. and Perego, P., 'Process Development of Continuous Hydrogen Production by Enterobacter aerogenes in a Packed Column Reactor,' Bioprocess Eng., 22, 205-213(2000) https://doi.org/10.1007/PL00009112
  47. Godfroy, A., Raven, N. D. H. and Sharp, R. J., 'Physiology and Continuous Culture of the Hyperthermophilic Deep-sea Vent Archaeon Pyrococcus abyssi ST549,' FEMS Microbiol. Lett., 186(1), 127-132(2000) https://doi.org/10.1111/j.1574-6968.2000.tb09093.x
  48. Schröder, C., Selig, M. and Schönheit, P., 'Glucose Fermentation to Acetate, $CO_{2}$, and $H_{2}$ in the Anaerobic Hyperthermophilic Eubacterium Thermotoga maritima: Involvement of the Embden-Meyerhof Pathway,' Arch Microbiol., 161(6), 460-470 (1994)
  49. Fiala, G. and Stetter, K. O., 'Pyrococcus furiosus sp. nov. Represents a Novel Genus of Marine Heterotrophic Archaebacteria Growing Optimally at 100 $^{\circ}C$,' Arch Microbiol., 145(1), 56-61(1986) https://doi.org/10.1007/BF00413027
  50. Dietrich, G., Weiss, N. and Winter, J., 'Acetothermus paucivorans, gen. nov., sp. nov, a Strictly Anaerobic, Thermophilic Bacterium From Sewage Sludge, Fermenting Hexoses to Acetate, $CO_{2}$, and $H_{2}$,' Syst. Appl. Microbiol., 10, 174-179(1988) https://doi.org/10.1016/S0723-2020(88)80033-X
  51. Soutschek, B., Winter, J., Schindler, F. and Kandler, O., 'Acetomicrobium flavidum, gen. nov., sp., nov., a Thermophilic, Anaerobic Bacterium from Sewage Sludge, Forming Acetate, $CO_{2}$, and $H_{2}$ From Glucose,' Syst. Appl. Microbiol., 5, 377-390(1984) https://doi.org/10.1016/S0723-2020(84)80039-9
  52. Reith, J. H., Wijffels, R. H. and Barten, H. (Ed.), Bio-Methane & bio-Hydrogen: Status and Perspectives of Biological Methane and Hydrogen Production, Dutch Biological Hydrogen Foundation, The Netherlands, 103-123(2003)
  53. Van Niel, E. W. J., Budde, M. A. W., De Haas, G. G., Van der Wal, F. J., Claassen, P. A. M. and Stams, A. J. M., 'Distinctive Properties of High Hydrogen Producing Extreme Thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii,' Int. J. Hydrogen Energy, 27(11-12), 1391-1398(2002) https://doi.org/10.1016/S0360-3199(01)00087-8
  54. Kanai, T., Fukui, T., Atomi, H. and Imanaka, T., 'Continuous Hydrogen Production by the Hyperthermophilic Archaeon, Thermococcus kodakaraensis KOD1,' 15th WHEC, June, Japan(2004)