Effects of Separator Carbonization on the Characteristics of Aluminium Polymer Condenser

알루미늄 고분자 콘덴서의 특성에 대한 절연지 탄화의 영향

  • Kim, Jae Kun (Department of Chemical Engineering, Chung-Ang University) ;
  • Yu, Hyung Jin (R&D Center, EneSol Co., Ltd.) ;
  • Hong, Yoong He (R&D Center, EneSol Co., Ltd.) ;
  • Park, Mi Jin (R&D Center, EneSol Co., Ltd.) ;
  • Park, Seung Youl (R&D Center, EneSol Co., Ltd.)
  • 김재근 (중앙대학교 화학공학과) ;
  • 유형진 (에너솔(주) 기술연구소) ;
  • 홍웅희 (에너솔(주) 기술연구소) ;
  • 박미진 (에너솔(주) 기술연구소) ;
  • 박승열 (에너솔(주) 기술연구소)
  • Received : 2006.08.03
  • Accepted : 2006.08.31
  • Published : 2006.10.10

Abstract

A study on the polymerization of polyethylenedioxythiophene (PEDOT) and the carbonization process of a separator was carred out in order to apply conductive polymer PEDOT to the winding typed aluminum condenser as a solid electrolyte and a negative electrode. PEDOT was polymerized with ethylenedioxythiophene (EDOT) as a monomer and ferric-p-toluenesulfonate as an oxidizing agent. The separator of condenser element was carbonized to control its fibrous tissue for the purpose of making it easy to impregnate the PEDOT solution into the microporous etched pit of aluminum foil by preventing separator from concentrating the PEDOT solution on itself. The characteristics of condenser such as capacitance, dissipation factor, equivalent series resistance, and thermal resistance depended on a carbonization temperature and a carbonization time. It was found that a thickness and a density of the used separator were major parameters of carbonization process and the characteristics of condenser were affected by these parameters.

Keywords

polyethylenedioxythiophene;ethylenedioxythiophene;aluminum solid electrolyte condenser;carbonization temperature;carbonization time

References

  1. A. Nishino, J. Electrochem. Soc., 69, 397 (2001)
  2. H. Ohno and M. Yoshizawa, Electrochemistry (Japan), 70, 136 (2002)
  3. J. Fuller, R. T. Carlin, and R. A. Osteryoung, J. Electrochem. Soc., 144, 3881 (1997) https://doi.org/10.1149/1.1838106
  4. A. B. McEwen, S. F. McDevitt, and V. R. Koch, J. Electrochem. Soc., 144, L84 (1997) https://doi.org/10.1149/1.1837561
  5. A. Nishino, J. Power Sources, 60, 137 (1996) https://doi.org/10.1016/S0378-7753(96)80003-6
  6. I. Nagata, Aluminium Electrolytic Condenser, Japan Capacitor Industrial Co., Ltd., Japan (1988)
  7. K. I. Seo and I. J. Chung, Polymer, 41, 4491 (2000) https://doi.org/10.1016/S0032-3861(99)00670-9
  8. A. Nishino, in M. Z. A. Munshi (ed.), Handbook of Solid State Batteies & Capacitors, ed. M. Z. A. Munshi, World Scientific, Singapore, 627 (1995)
  9. H. Ohtaki, Electrochemistry (Japan), 67, 810 (1999)
  10. J. K. Kim, H. K. Min, and K. Y. Hwang, J. Korean Ind. Eng. Chem., 11, 535 (2000)
  11. N. Sakmeche, S. Aeiyach, J. J. Aaron, M. Jouini, J. C. Lacroix, and P. C. Lacaze, Langmuir, 15, 2566 (1999) https://doi.org/10.1021/la980909j
  12. Y. Kudoh, K. Akami, and Y. Matauya, Synth. Met., 98, 65 (1998) https://doi.org/10.1016/S0379-6779(98)00148-9