Phosphorylation of Eukaryotic Elongation Factor 2 Can Be Regulated by Phosphoinositide 3-Kinase in the Early Stages of Myoblast Differentiation

  • Woo, Joo Hong (Department of Biological Science, College of Natural Sciences, Ajou University) ;
  • Kim, Hye Sun (Department of Biological Science, College of Natural Sciences, Ajou University)
  • Received : 2005.10.07
  • Accepted : 2006.01.01
  • Published : 2006.04.30

Abstract

We have previously reported that phosphorylation of eukaryotic elongation factor 2 (eEF2) is related to the differentiation of chick embryonic muscle cells in culture. In the present study, we found that eEF2 phosphorylation declined shortly after induction of differentiation of L6 myoblasts, when the cells prepare for terminal differentiation by withdrawing from the cell cycle. This decrease in phosphorylation was prevented by inhibitors of phosphoinositide 3-kinase (PI3-kinase) that strongly inhibit myoblast differentiation. We hypothesized that PI3-kinase plays an important role in myoblast differentiation by regulating eEF2 phosphorylation in the early stages of differentiation. To test this hypothesis, myoblasts were synchronized at in $G_2/M$ and cultured in fresh differentiation medium (DM) or growth medium (GM). In DM the released cells accumulated in $G_0$/$G_1$ while in GM they progressed to S phase. In addition, cyclin D1 was more rapidly degraded in DM than in GM, and eEF2 phosphorylation decreased more. Inhibitors of PI3-kinase increased eEF2 phosphorylation, but PI3-kinase became more activated when eEF2 phosphorylation declined. These results suggest that the regulation of L6 myoblast differentiation by PI3-kinase is related to eEF2 phosphorylation.

Keywords

Cell Cycle;Eukaryotic Elongation Factor 2(eEF2);LY 294002;Myoblast Differentiation;Phosphoinositide 3-Kinase (PI3-Kinase)

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Altucci, L., Addeo, R., Cicatiello, L., Dauvois, S., Parker, M. G., et al. (1996) 17beta-Estradiol induces cyclin D1 gene transcription, p36D1-p34cdk4 complex activation and p105Rb phosphorylation during mitogenic stimulation of G1-arrest human breast cancer cells. Oncogene 12, 2315-2324
  2. De Angelis, L., Borghi, S., Melchionna, R., Berghella, L., Baccarani- Contri, M., et al. (1998) Inhibition of myogenesis by transforming growth factor beta is density-dependent and related to the translocation of transcription factor MEF2 to the cytoplasm. Proc. Natl. Acad. Sci. USA 95, 12358-12363
  3. Gao, N., Zhang, Z., Jiang, B. H., and Shi, X. (2003) Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem. Biophys. Res. Commun. 310, 1124-1132 https://doi.org/10.1016/j.bbrc.2003.09.132
  4. Kim, H. S., Lee, I. H., Chung, C. H., Kang, M. S., and Ha, D. B. (1992) $Ca^{2+}$/calmodulin-dependent phosphorylation of the 100-kDa protein in chick embryonic muscle cells in culture. Dev. Biol. 150, 223-230 https://doi.org/10.1016/0012-1606(92)90237-B
  5. Kimura, K., Hattori, S., Kabuyama, Y., Shizawa, Y., Takayanagi, J., et al. (1994) Neurite outgrowth of PC12 cells is suppressed by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase. J. Biol. Chem. 269, 18961-18967
  6. Lavoie, J. N., L'Allemain, G., Brunet, A., Muller, R., and Pouyssegur, J. (1996) Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem. 271, 20608-20616 https://doi.org/10.1074/jbc.271.34.20608
  7. Matsushime, H., Roussel, M. F., Ashmun, R. A., and Sherr, C. J. (1991) Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65, 701-713 https://doi.org/10.1016/0092-8674(91)90101-4
  8. Nairn, A. C., Bhagat, B., and Palfrey, H. C. (1985) Identification of calmodulin-dependent protein kinase III and its major Mr 100,000 substrate in mammalian tissues. Proc. Natl. Acad. Sci. USA 82, 7939-7943
  9. Nilsson, A. and Nygard, O. (1995) Phosphorylation of eukaryotic elongation factor 2 in differentiating and proliferating HL-60 cells. Biochim. Biophys. Acta 1268, 263-268 https://doi.org/10.1016/0167-4889(95)00084-6
  10. Ryazanov, A. G. (2002) Elongation factor-2 kinase and its newly discovered relatives. FEBS Lett. 514, 26-29 https://doi.org/10.1016/S0014-5793(02)02299-8
  11. Ryazanov, A. G. and Spirin, A. S. (1993) Phosphorylation of elongation factor 2; a mechanism to shut off protein synthesis for reprogramming gene expression; in Translational Regulation of Gene Expression 2, Ilan, J. (ed.), pp. 433-455, Plenum Press, New York
  12. Ryazanov, A. G., Shestakova, E. A., and Natapov, P. G. (1988) Phosphorylation of elongation factor 2 by EF-2 kinase affects rate of translation. Nature 334, 170-173 https://doi.org/10.1038/334170a0
  13. Tuazon, P. T., Merrick, W. C., and Traugh, J. A. (1989) Comparative analysis of phosphorylation of translational initiation and elongation factors by seven protein kinases. J. Biol. Chem. 264, 2773-2777
  14. Valius, M. and Kazlauskas, A. (1993) Phospholipase C-gamma 1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor's mitogenic signal. Cell 73, 321-334 https://doi.org/10.1016/0092-8674(93)90232-F
  15. Waga, S., Hannon, G. J., Beach, D., and Stillman, B. (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369, 574-578 https://doi.org/10.1038/369574a0
  16. Guo, K., Wang, J., Andres, V., Smith, R. C., and Walsh, K. (1995) MyoD-induced expression of p21 inhibits cyclindependent kinase activity upon myocytes terminal differentiation. Mol. Cell. Biol. 15, 3823-3829 https://doi.org/10.1128/MCB.15.7.3823
  17. Hay, N. and Sonenberg, N. (2004) Upstream and downstream of mTOR. Genes Dev. 18, 1926-1945 https://doi.org/10.1101/gad.1212704
  18. Thomas, J. E., Venugopalan, M., Galvin, R., Wang, Y., Bokoch, G. M., et al. (1997) Inhibition of MG-63 cell proliferation and PDGF-stimulated cellular processes by inhibitors of phosphatidylinositol 3-kinase. J. Cell. Biochem. 64, 182-195 https://doi.org/10.1002/(SICI)1097-4644(199702)64:2<182::AID-JCB2>3.0.CO;2-T
  19. Nadal-Ginard, B. (1978) Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis. Cell 15, 855-864 https://doi.org/10.1016/0092-8674(78)90270-2
  20. Browne, G. J., Finn, S. G., and Proud, C. G. (2004) Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor-2 kinase and to its phosphorylation at a novel site, serine 398. J. Biol. Chem. 279, 12220-12231 https://doi.org/10.1074/jbc.M309773200
  21. Gutzkow, K. B., Lahne, H. U., Naderi, S., Torgersen, K. M., Skalhegg, B., et al. (2003) Cyclic AMP inhibits translation of cyclin D3 in T lymphocytes at the level of elongation by inducing eEF2-phosphorylation. Cell Signal. 15, 871-881 https://doi.org/10.1016/S0898-6568(03)00038-X
  22. Miyatake, S., Nakano, H., Park, S. Y., Yamazaki, T., Takase, K., et al. (1995) Induction of G1 arrest by down-regulation of cyclin D3 in T cell hybridomas. J. Exp. Med. 182, 401-408 https://doi.org/10.1084/jem.182.2.401
  23. Conejo, R., Valverde, A. M., Benito, M., and Lorenzo, M. (2001) Insulin produces myogenesis in C2C12 myoblasts by induction of NF-kappaB and downregulation of AP-1 activities. J. Cell Physiol. 86, 82-94
  24. Knebel, A., Morrice, N., and Cohen, P. (2001) A novel method to identify protein kinase substrates: eEF2 kinase is phosphorylated and inhibited by SAPK4/p38delta. EMBO J. 20, 4360-4369 https://doi.org/10.1093/emboj/20.16.4360
  25. Olson, E. N. and Klein, W. H. (1994) bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev. 8, 1-8 https://doi.org/10.1101/gad.8.1.1
  26. Zieve, G. W., Turnbull, D., Mullins, J. M., and McIntosh, J. R. (1980) Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Nocodazole accumulated mitotic cells. Exp. Cell Res. 2, 397-405
  27. Fingar, D. C. and Blenis, J. (2004) Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23, 3151-3171 https://doi.org/10.1038/sj.onc.1207542
  28. Halevy, O., Novitch, B. G., Douglas, B. S., Skapek, S. X., Rhee, J., et al. (1995) Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267, 1018-1024 https://doi.org/10.1126/science.7863327
  29. Lanahan, A., Williams, J. B., Sanders, L. K., and Nathans, D. (1992) Growth factor-induced delayed early response genes. Mol. Cell. Biol. 12, 3919-3929 https://doi.org/10.1128/MCB.12.9.3919
  30. Musgrove, E. A., Hamilton, J. A., Lee, C. S., Sweeney, K. J., Watts, C. K., et al. (1993) Growth factor, steroid, and steroid antagonist regulation of cyclin gene expression associated with changes in T-47D human breast cancer cell cycle progression. Mol. Cell. Biol. 13, 3577-3587 https://doi.org/10.1128/MCB.13.6.3577
  31. Pinset, C., Garcia, A., Rousse, S., Dubois, C., and Montarras, D. (1997) Wortmannin inhibits IGF-dependent differentiation in the mouse myogenic cell line C2. C. R. Acad. Sci. III 320, 367-374 https://doi.org/10.1016/S0764-4469(97)85024-X
  32. Baek, H. J., Jeon, Y. J., Kim, H. S., Kang, M. S., Chung, C. H., et al. (1994) Cyclic AMP negatively modulates both $Ca^{2+}$/calmodulin-dependent phosphorylation of the 100-kDa protein and membrane fusion of chick embryonic myoblasts. Dev. Biol. 165, 178-184 https://doi.org/10.1006/dbio.1994.1244
  33. Florini, J. R., Ewton, D. Z., and Coolican, S. A. (1996) Growth hormone and the insulin-like growth factor system in myogenesis. Endocr. Rev. 17, 481-517
  34. Kaliman, P., Canicio, J., Shepherd, P. R., Beeton, C. A., Testar, X., et al. (1998) Insulin-like growth factors require phosphatidylinositol 3-kinase to signal myogenesis: dominant negative p85 expression blocks differentiation of L6E9 muscle cells. Mol. Endocrinol. 12, 66-77 https://doi.org/10.1210/me.12.1.66
  35. Wang, X., Li, W., Williams, M., Terada, N., Alessi, D. R., and Proud, C. G. (2001) Regulation of elongation factor 2 kinase by p90 (RSK1) and p70 S6 kinase. EMBO J. 20, 4370-4379 https://doi.org/10.1093/emboj/20.16.4370
  36. Cortright, D. N., Azevedo, J. L. Jr., Hickey, M. S., Tapscott, E. B., and Dohm, G. L. (1997) Vanadate stimulation of 2-deoxyglucose transport is not mediated by PI3-kinase in human skeletal muscle. Biochim. Biophys. Acta 1358, 300-306 https://doi.org/10.1016/S0167-4889(97)00072-4
  37. Giorgino, F., Pedrini, M. T., Matera, L., and Smith, R. J. (1997) Specific increase in p85alpha expression in response to dexamethasone is associated with inhibition of insulin-like growth factor-I stimulated phosphatidylinositol 3-kinase activity in cultured muscle cells. J. Biol. Chem. 272, 7455-7463 https://doi.org/10.1074/jbc.272.11.7455
  38. Casagrande, F., Bacqueville, D., Pillaire, M. J., Malecaze, F., Manenti, S., et al. (1998) G1 phase arrest by the phosphatidylinositol 3-kinase inhibitor LY294002 is correlated to upregulation of p27Kip1 and inhibition of G1 CDKs in choroidal melanoma cells. FEBS Lett. 422, 385-390 https://doi.org/10.1016/S0014-5793(98)00043-X
  39. Cuenda, A. and Cohen, P. (1999) Stress-activated protein kinase-2/p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesis. J. Biol. Chem. 274, 4341-4346 https://doi.org/10.1074/jbc.274.7.4341
  40. Woo, J. H., Kim, J. H., Mook-Jung, I., and Kim, H. S. (2006) Lipid products of phosphoinositide 3-kinase abrogate genistein- induced fusion inhibition in myoblasts. Eur. J. Pharmacol. 529, 84-94 https://doi.org/10.1016/j.ejphar.2005.11.007
  41. Coolican, S. A., Samuel, D. S., Ewton, D. Z., McWade, F. J., and Florini, J. R. (1997) The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J. Biol. Chem. 272, 6653-6662 https://doi.org/10.1074/jbc.272.10.6653
  42. Parker, S. B., Eichele, G., Zhang, P., Rawls, A., Sands, A. T., et al. (1995) p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267, 1024- 1026 https://doi.org/10.1126/science.7863329
  43. Shin, Y. J., Woo, J. H., Chung, C. H., and Kim, H. S. (2000) Retinoic acid and its geometrical isomers block both growth and fusion of L6 myoblasts by modulating the expression of protein kinase A. Mol. Cells 10, 162-168 https://doi.org/10.1007/s10059-000-0162-x
  44. Rameh, L. E. and Cantley, L. C. (1999) The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 274, 8347-8350 https://doi.org/10.1074/jbc.274.13.8347
  45. Foulstone, E. J., Meadows, K. A., Holly, J. M., and Stewart, C. E. (2001) Insulin-like growth factor (IGF-I and IGF-II) inhibit C2 skeletal myoblast differentiation and enhance TNF alpha-induced apoptosis. J. Cell Physiol. 189, 207-215 https://doi.org/10.1002/jcp.10017
  46. Quelle, D. E., Ashmun, R. A., Shurtleff, S. A., Kato, J. Y., Bar- Sagi, D., et al. (1993) Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev. 7, 1559-1571 https://doi.org/10.1101/gad.7.8.1559
  47. Palfrey, H. C., Nairn, A. C., Muldoon, L. L., and Villereal, M. L. (1987) Rapid activation of calmodulin-dependent protein kinase III in mitogen-stimulated human fibroblasts. Correlation with intracellular $Ca^{2+}$ transients. J. Biol. Chem. 262, 9785- 9792
  48. Patel, J., McLeod, L. E., Vries, R. G., Flynn, A., Wang, X., et al. (2002) Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. Eur. J. Biochem. 269, 3076-3085 https://doi.org/10.1046/j.1432-1033.2002.02992.x
  49. Kim, H. S., Lee, I. H., Jeon, Y. J., Chung, C. H., and Ha, D. B. (1993) Sphingosine blocks both membrane fusion and calmodulin-dependent phosphorylation of the 100-kDa protein of chick embryonic myoblasts. Exp. Cell Res. 205, 408-411 https://doi.org/10.1006/excr.1993.1105
  50. Okada, T., Kawano, Y., Sakakibara, T., Hazeki, O., and Ui, M. (1994) Essential role of phosphatidylinositol 3-kinase in insulin- induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J. Biol. Chem. 269, 3568-3573
  51. Shu, L., Zhang, X., and Houghton, P. J. (2002) Myogenic differentiation is dependent on both the kinase function and the Nterminal sequence of mammalian target of rapamycin. J. Biol. Chem. 277, 16726-16732 https://doi.org/10.1074/jbc.M112285200
  52. Lassar, A. B., Skapek, S. X., and Novitch, B. (1994) Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr. Opin. Cell Biol. 6, 788-794 https://doi.org/10.1016/0955-0674(94)90046-9
  53. Ryazanov, A. G. and Davydova, E. K. (1989) Mechanism of elongation factor 2 (EF-2) inactivation upon phosphorylation. Phosphorylated EF-2 is unable to catalyze translocation. FEBS Lett. 251, 187-190 https://doi.org/10.1016/0014-5793(89)81452-8
  54. Sarker, K. P. and Lee, K. Y. (2004) L6 myoblast differentiation is modulated by Cdk5 via the PI3K-AKT-p70S6K signaling pathway. Oncogene 23, 6064-6070 https://doi.org/10.1038/sj.onc.1207819
  55. Yao, R. and Cooper, G. M. (1995) Requirement for phosphatidylinositol- 3 kinase in the prevention of apoptosis by nerve growth factor. Science 267, 2003-2006 https://doi.org/10.1126/science.7701324
  56. Jiang, B. H., Aoki, M., Zheng, J. Z., Li, J., and Vogt, P. K. (1999) Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B. Proc. Natl. Acad. Sci. USA 96, 2077-2081
  57. Kaliman, P., Vinals, F., Testar, X., Palacin, M., and Zorzano, A. (1996) Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells. J. Biol. Chem. 271, 19146-19151 https://doi.org/10.1074/jbc.271.32.19146
  58. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  59. Muise-Helmericks, R. C., Grimes, H. L., Bellacosa, A., Malstrom, S. E., Tsichlis, P. N., et al. (1998) Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. J. Biol. Chem. 273, 29864-29872 https://doi.org/10.1074/jbc.273.45.29864
  60. Watts, C. K., Sweeney, K. J., Warlters, A., Musgrove, E. A., and Sutherland, R. L. (1994) Antiestrogen regulation of cell cycle progression and cyclin D1 gene expression in MCF-7 human breast cancer cells. Breast Cancer Res. Treat. 31, 95-105 https://doi.org/10.1007/BF00689680
  61. Zhang, P., Wong, C., Liu, D., Finegold, M., Harper, J. W., et al. (1999) p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step. Genes Dev. 13, 213-224 https://doi.org/10.1101/gad.13.2.213
  62. Canicio, J., Gallardo, E., Illa, I., Testar, X., Palacin, M., et al. (1998) p70 S6 kinase activation is not required for insulinlike growth factor-induced differentiation of rat, mouse, or human skeletal muscle cells. Endocrinology 139, 5042-5049 https://doi.org/10.1210/en.139.12.5042
  63. Jeon, Y. J., Kim, H. S., Kim, H. S., Kang, M. S., Chung, C. H., et al. (1994) The 100-kDa protein, whose phosphorylation precedes the fusion of chick embryonic myoblasts, is the eukaryotic elongation factor-2. Biochem. Biophys. Res. Commun. 198, 132-137 https://doi.org/10.1006/bbrc.1994.1019
  64. Kiess, M., Gill, R. M., and Hamel, P. A. (1995) Expression and activity of the retinoblastoma protein (pRB)-family proteins, p107 and p130, during L6 myoblast differentiation. Cell Growth Differ. 6, 1287-1298