Determination of Cytoplasmic Male Sterile Factors in Onion Plants (Allium cepa L.) Using PCR-RFLP and SNP Markers

  • Cho, Kwang-Soo (National Institute of Highland Agriculture, Rural Development Administration) ;
  • Yang, Tae-Jin (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Hong, Su-Young (National Institute of Highland Agriculture, Rural Development Administration) ;
  • Kwon, Young-Seok (National Institute of Highland Agriculture, Rural Development Administration) ;
  • Woo, Jong-Gyu (National Horticultural Research Institute, Rural Development Administration) ;
  • Park, Hyo-Guen (School of Plant Science, Seoul National University)
  • Received : 2006.03.06
  • Accepted : 2006.04.22
  • Published : 2006.06.30

Abstract

We have developed a polymerase chain reactionrestriction fragment length polymorphism (PCR-RFLP) marker that can distinguish male-fertile (N) and male-sterile (S) cytoplasm in onions. The PCR-RFLP marker was located in a chloroplast psbA gene amplicon. Digesting the amplicons from different cytoplasm-containing varieties with the restriction enzyme MspI revealed that N-cytoplasm plants have a functional MspI site (CCGG), whereas the S-cytoplasm plants has a substitution in that site (CTGG), and thus no MspI target. The results obtained using this PCR-RFLP marker to distinguish between cytoplasmic male sterile factors in 35 onion varieties corresponded with those using a CMS-specific sequence-characterized amplified region (SCAR) marker. Moreover, the PCR-RFLP marker can identify N- ot S-cytoplasms in DNA sample mixtures in which they are in up to a 10-fold minority, indicating that use of the marker has high diagnostic precision. We also demonstrated the usefulness of the SNP detected in the psbA gene for high-throughput discrimination of CMS factors using Real-time PCR and a TaqMan probe assay.

Keywords

Cytoplasmic Male Sterility (CMS);Marker-assisted Breeding (MAB);PCR-RFLP;Real-Time PCR;Sequence Characterized Amplified Region (SCAR) Marker

Acknowledgement

Supported by : Ministry of Agriculture and Forestry, National Institute of Highland Agriculture

References

  1. Alcala, J., Giovannoni, J. J., Pike, L. M., and Reddy, A. S. (1997) Application of genetic bit analysis ($GBA^TM$) for allelic selection in plant breeding. Mol. Breed. 3, 495-502 https://doi.org/10.1023/A:1009690600829
  2. Holland, P. M., Abramson, R. D., Watson, R., and Gelfland, D. H. (1991) Detection of specific polymerase chain reaction product by utilizing the 5′→3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA 88, 7276-7280 https://doi.org/10.1073/pnas.88.16.7276
  3. Jones, H. A. and Clarke, A. (1943) Inheritance of male sterility in the onion and the production of hybrid seed. Proc. Am. Soc. Hort. Sci. 43, 189-194
  4. Kim, D. S., Kim, D. H., Yoo, J. H., and Kim, B. D. (2006) Cleaved amplified polymorphic sequence and amplified fragment length polymorphism markers linked to the fertility restorer gene in chili pepper (Capsicum annuum L.). Mol. Cells 21, 135-140
  5. Kota, R., Wolf, M., Michalek, W., and Graner, A. (2001) Application of denaturing high-performance liquid chromatography for mapping of single nucleotide polymorphism in barley. Genome 44, 523-528 https://doi.org/10.1139/gen-44-4-523
  6. Park, J. I., Yang, S. H., Nou, I. S., Park, Y. S., and Lee, S. S. (2000) Identification of S-halotype by PCR-RFLP in Brassica. Kor. Soc. Hort. Sci. 41, 21-26
  7. Vedel, F., Pla, M., Vitart, V., Gutierres, S., Chetrit, P., et al. (1994) Molecular basis of nuclear and cytoplamic male sterility in higher plants. Plant Physiol. Biochem. 32, 601-618
  8. Cho, K. S., Yang, T. J., Kwon, Y. S., and Woo, J. G. (2001) Development and application of SCAR markers related to cytoplasmic male sterility in onion (Allium cepa L). Kor. Soc. Hort. Sci. 42, 527-532
  9. Burger, G., Gray, W. M., and Franz Lang, B. (2003) Mitochondrial genomes: anything goes. Trends Genet. 19, 709-716 https://doi.org/10.1016/j.tig.2003.10.012
  10. Cho, Y., Mower, J. P., Qiu, Y. L., and Palmer, J. D. (2004) From the cover: mitochondrial substitution rates are extraordinary elevated and variable in a genus of flowering plants. Proc. Natl. Acad. Sci. USA 101, 17741-17746 https://doi.org/10.1073/pnas.0408302101
  11. Berninger, E. (1965) Contribution a l'etude de la sterilite male de l'oignon (Allium cepa L.). Ann. Amelior. Plant 15, 183- 199
  12. Havey, M. J. and Daniela, L. L. (1999) Toward the identification of cytoplasmic male sterility in leek: Evaluation of organellar DNA diversity among cultivated accessions of Allium ampeloprasum. J. Am. Soc. Hort. Sci. 124, 163-165
  13. Satoh, Y., Nagai, M., Mikami, T., and Kinoshita, T. (1993) The use of mitochondrial DNA polymorphism in the classification of individual onion plants by cytoplasmic genotypes. Theor. Appl. Genet. 86, 345-348
  14. Cho, K. S., Hong, S. Y., Kwon, Y. S., Woo, J. G., Moon, J. Y., et al. (2005) Selection of maintainer line in open-pollinated onion using SCAR marker linked to cytoplasmic male sterile factor. Korean. J. Breed. 37, 133-137
  15. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Habor, N.Y.
  16. Luo, G., Hepburn, A. G., and Widholm, J. M. (1992) Extraction of retractable DNA from plants of the genus Nelumbo. Plant Mol. Biol. Reptr. 10, 316-318 https://doi.org/10.1007/BF02668907
  17. Holford, P., Croft, J. H., and Newbury, H. J. (1991) Differences between, and possible origins of the cytoplasms found in fertile and male-sterile onions (Allium cepa L.). Theor. Appl. Genet. 82, 737-744
  18. Sugiyama, Y., Watase, Y., Nagase, M., Makita, N., Yagura, S., et al. (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol. Gen. Genomics 272, 603-615 https://doi.org/10.1007/s00438-004-1075-8
  19. de Courcel, A., Vedel, F., and Boussac, J. (1989) DNA polymorphism in Allium cepa cytoplasms and its implications concerning the origin of onions. Theor. Appl. Genet. 77, 793-798 https://doi.org/10.1007/BF00268328
  20. Sato, Y. (1998) PCR amplification of CMS-specific mitochondrial nucleotide sequence to identify cytoplasmic genotypes of onion (Allium cepa). Theor. Appl. Genet. 96, 367-370 https://doi.org/10.1007/s001220050750
  21. Havey, M. J. (2000) Diversity among male-sterility-inducing and male-fertile cytoplasm of onion. Theor. Appl. Genet. 101, 778-782 https://doi.org/10.1007/s001220051543
  22. Kim, S. M. and Sohn, J. K. (2005) Identification of a rice gene (Bph 1) conferring resistance to brown planthopper (Nilaparvata lugens Stal) using STS markers. Mol. Cells 20, 30-34
  23. Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., et al. (1989) The complete sequence of the rice (Oryza sativa L.) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genomics 217, 185-194 https://doi.org/10.1007/BF02464880
  24. Notsu, Y., Masood, S., Nishikawa, T., Kubo, N., Akiduki, G., et al. (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: Frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol. Gen. Genomics 268, 434-445 https://doi.org/10.1007/s00438-002-0767-1
  25. Frey, J. E., Muller-Scharer, H., Frey, B., and Frey, D. (1999) Complex relation between triazine-susceptible phenotype and genotype in the weed Senecio vulgaris may be caused by chloroplast DNA polymorphism. Theor. Appl. Genet. 99, 578-586 https://doi.org/10.1007/s001220051271
  26. Mukkamala, L., Padmanabhan, S., Madasamy, P., Mundaya, N. J., and Parida, A. J. (2000) PCR-RFLP analysis of chloroplast gene region in Cajanus (leguminosae) and allied Genera. Euphytica 116, 243-250 https://doi.org/10.1023/A:1004030207084
  27. Kim, H. T., Hirata, Y., and Nou, I. S. (2002) Determination of Sgenotypes of Pear (pyrus pyrifolia) cultivars by S-RNase sequencing and PCR-RFLP analyses. Mol. Cells 13, 444-451
  28. Parani, M., Lakshmi, M., Ziegenhagen, B., Fladung, M., Senthilkumar, P., et al. (2000) Molecular phylogeny of mangroves VII. PCR-RFLP of trnS-psbC and rbcL gene regions in 24 mangrove and mangrove-associate species. Theor. Appl. Genet. 100, 454-460
  29. Lilly, J. W. and Havey, M. J. (2001) Sequence analysis of a chloroplast intergenic spacer for phylogenetic estimates in Allium section Cepa and a PCR-based polymorphism detecting mixtures of male-fertile and male-sterile cytoplasmic onion. Theor. Appl. Genet. 102, 78-82 https://doi.org/10.1007/s001220051620
  30. Havey, M. J. (1995) Identification of cytoplasms using the polymerase chain reaction to aid in the extraction of maintainer lines from open-pollinated populations on onion. Theor. Appl. Genet. 90, 263-268
  31. Tsumamura, Y., Kawahara, T., Wicknes, R., and Yoshimura, K. (1996) Molecular phylogeny of Dipterocarpaceae in Southeast Asia using RFLP of PCR-amplified chloroplast genes. Theor. Appl. Genet. 93, 22-29 https://doi.org/10.1007/BF00225722