A Study on the Curing Characteristics and the Synthesis of Polyurethane Acrylate Hybrid Emulsion

폴리우레탄 아크릴레이트 하이브리드 에멀젼의 합성 및 경화특성에 관한 연구

  • Han, Sang-Hoon (Department of Chemical Engineering, Dong-A University) ;
  • Park, Dong-Won (Department of Chemical Engineering, Dong-A University)
  • 한상훈 (동아대학교 화학공학과) ;
  • 박동원 (동아대학교 화학공학과)
  • Received : 2005.10.06
  • Accepted : 2006.01.26
  • Published : 2006.04.10


Polyurethane acrylate hybrid emulsions were prepared by seeded polymerization techniques. In the synthesis, seeded polyurethane dispersion containing a carboxylic group was used to endow hydrophilicity to the hybrid emulsion and various acrylates such as methyl methacrylate (MMA), 2-hydroxy ethylmethacrylate (2-HEMA), n-butyl acrylate (n-BA) and acrylic acid (AAc) were used to endow hydrophobicity. The particle size and distribution of various emulsion particles such as polyurethane acrylate hybrid emulsion, polyurethane dispersion homopolymer, acrylate emulsion, and physical blending emulsion were measured by a particle size analyzer. The average particle size of hybrid emulsion was greater than physical blending emulsion. And tensile strength, 100% modulus, elongation, and swelling properties of the polyurethane acrylate hybrid emulsion were studied and compared with those of polyurethane homopolymer, acrylate emulsion, and physically blended compositor, respectively. To improve chemical and physical resistance, this paper review a melamine hardener and compares it for effects on the physical properties of cured coating.


Supported by : 동아대학교


  1. S. Mohanty and N. Krishnamurti, J. Appl. Polym. Sci., 62, 1993 (1996) https://doi.org/10.1002/(SICI)1097-4628(19961219)62:12<1993::AID-APP3>3.0.CO;2-D
  2. F. M. B. Coutinho, M. C. Delpech, and L. S. Alves, J. Appl. Polym. Sci., 80, 566 (2001) https://doi.org/10.1002/1097-4628(20010425)80:4<566::AID-APP1131>3.0.CO;2-H
  3. C. R. Hegedus and K. A. Kloiber, Surf. Coat. Techol., 68, No. 860, 39 (1996)
  4. Y. H. Jan, Y. T. Hwang, C. Y. Shih, and H. C. Li, Microphase structure and mechanical properties of the acrylic-PU aqueousdispersions; effects of acrylate polymerization processes; 22nd Waterborne, High-Solids and Powder Coatings Symp., New Orleans, 22-24 February (1995)
  5. D. Kukanja, J. Golob, A. Zupancic-Valant, and M. Krajnc, J. Appl. Polym. Sci., 78, 67 (2000) https://doi.org/10.1002/1097-4628(20001003)78:1<67::AID-APP100>3.0.CO;2-4
  6. M. Hirose, J. Zhou, and N. Katsutoshi, Prog. Org. Coat., 38, 27 (2000) https://doi.org/10.1016/S0300-9440(99)00081-8
  7. C. Hare, J. Protetive Coat., 10, 69 (1993)
  8. U. S. Patent 4,644,030 (1987)
  9. Y. Tezuka, S. Nobe, and T. Shiomi, Macromolecules, 28, 8251 (1995) https://doi.org/10.1021/ma00128a040
  10. L. M. Sergeeva, S. I. Skiba, and L. V. Karabanova, Polym. Int., 39, 317 (1996) https://doi.org/10.1002/(SICI)1097-0126(199604)39:4<317::AID-PI499>3.0.CO;2-O
  11. J. G. Park, J. Y. Kim, and K. D. Suh, J. Appl Polym. Sci., 69, 2291 (1998) https://doi.org/10.1002/(SICI)1097-4628(19980912)69:11<2291::AID-APP22>3.0.CO;2-0
  12. Y. Zhang, R. J. Heath, and D. J. Hourston, J. Appl. Polym. Sci., 75, 406 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000118)75:3<406::AID-APP10>3.0.CO;2-B
  13. S. Dadbin and R. P. Chaplin, J. Appl. Polym. Sci., 81, 3361 (2001) https://doi.org/10.1002/app.1792
  14. U. S. Patent 3,684,758 (1972)
  15. U. S. Patent 4,198,330 (1980)
  16. M. Hirose, F. Kadowaki, and J. Zhou, Prog. Org. Coat., 31, 157 (1997) https://doi.org/10.1016/S0300-9440(97)00032-5
  17. A. Dong, A. Yingli, F. Shiyou, and S. Duoxian, J. Coll. Interface Sci., 214, 118 (1999) https://doi.org/10.1006/jcis.1999.5847
  18. R. G. Coogan., Prog. Org. Coat., 32, 52 (1997)