Interplay Between Intra- and Extracellular Calcium Ions

  • Lee, Eun Hui (Laboratory of Calcium Communication, Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Kim, Do Han ;
  • Allen, Paul D.
  • Received : 2006.06.04
  • Accepted : 2006.06.06
  • Published : 2006.06.30

Abstract

Two, well characterized cationic channels, the ryanodine receptor (RyR) and the canonical transient receptor potential cation channel (TRPC) are briefly reviewed with a particular attention on recent developments related to the interplay between the two channel families.

Keywords

Calcium Channel;DHPR;IP3R;RyanodineReceptor;TRPC

Acknowledgement

Supported by : Korean Ministry of Science and Technology, National Institutes of Health

References

  1. Anderson, K. and Meissner, G. (1995) T-tubule depolarizationinduced SR $Ca^{2+}$ release is controlled by dihydropyridine receptor- and $Ca^{2+}$-dependent mechanisms in cell homogenates from rabbit skeletal muscle. J. Gen. Physiol. 105, 363-383 https://doi.org/10.1085/jgp.105.3.363
  2. Balshaw, D. M., Yamaguchi, N., and Meissner, G. (2002) Modulation of intracellular calcium-release channels by calmodulin. J. Membr. Biol. 185, 1-8 https://doi.org/10.1007/s00232-001-0111-4
  3. Berridge, M. J., Bootman, M. D., and Roderick, H. L. (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517-529 https://doi.org/10.1038/nrm1155
  4. Brough, G. H., Wu, S., Cioffi, D., Moore, T. M., Li, M., et al. (2001) Contribution of endogenously expressed Trp1 to a $Ca^{2+}$-selective, store-operated $Ca^{2+}$ entry pathway. FASEB J. 15, 1727-1738 https://doi.org/10.1096/fj.01-0108com
  5. Chamberlain, B. K., Volpe, P., and Fleischer, S. (1984a) Calciuminduced calcium release from purified cardiac sarcoplasmic reticulum vesicles. General characteristics. J. Biol. Chem. 259, 7540-7546
  6. Chamberlain, B. K., Volpe, P., and Fleischer, S. (1984b) Inhibition of calcium-induced calcium release from purified cardiac sarcoplasmic reticulum vesicles. J. Biol. Chem. 259, 7547-7553
  7. Chu, A., Sumbilla, C., Inesi, G., Jay, S. D., and Campbell, K. P. (1990) Specific association of calmodulin-dependent protein kinase and related substrates with the junctional sarcoplasmic reticulum of skeletal muscle. Biochemistry 29, 5899-5905 https://doi.org/10.1021/bi00477a003
  8. Feng, W., Tu, J., Yang, T., Vernon, P. S., Allen, P. D., et al. (2002) Homer regulates gain of ryanodine receptor type 1 channel complex. J. Biol. Chem. 277, 44722-44730 https://doi.org/10.1074/jbc.M207675200
  9. Gailly, P. and Colson-Van Schoor, M. (2001) Involvement of trp-2 protein in store-operated influx of calcium in fibroblasts. Cell Calcium 30, 157-165 https://doi.org/10.1054/ceca.2001.0221
  10. Hakamata, Y., Nakai, J., Takeshima, H., and Imoto, K. (1992) Primary structure and distribution of a novel ryanodine receptor/ calcium release channel from rabbit brain. FEBS Lett. 312, 229-235 https://doi.org/10.1016/0014-5793(92)80941-9
  11. Hisatsune, C., Kuroda, Y., Nakamura, K., Inoue, T., Nakamura, T., et al. (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J. Biol. Chem. 279, 18887-18894 https://doi.org/10.1074/jbc.M311274200
  12. Hofmann, T., Obukhov, A. G., Schaefer, M., Harteneck, C., Gudermann, T., et al. (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397, 259-263 https://doi.org/10.1038/16711
  13. Hofmann, T., Schaefer, M., Schultz, G., and Gudermann, T. (2000a) Cloning, expression and subcellular localization of two novel splice variants of mouse transient receptor potential channel 2. Biochem. J. 351, 115-122 https://doi.org/10.1042/0264-6021:3510115
  14. Ito, K., Komazaki, S., Sasamoto, K., Yoshida, M., Nishi, M., et al. (2001) Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1. J. Cell Biol. 154, 1059-1067 https://doi.org/10.1083/jcb.200105040
  15. Jung, S., Strotmann, R., Schultz, G., and Plant, T. D. (2002) TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells. Am. J. Physiol. Cell Physiol. 282, C347-359 https://doi.org/10.1152/ajpcell.00283.2001
  16. Kawasaki, T. and Kasai, M. (1989) Disulfonic stilbene derivatives open the $Ca^{2+}$ release channel of sarcoplasmic reticulum. J. Biochem (Tokyo). 106, 401-405 https://doi.org/10.1093/oxfordjournals.jbchem.a122865
  17. Kim, D. H. and Ikemoto, N. (1986) Involvement of 60-kilodalton phosphoprotein in the regulation of calcium release from skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 261, 11674-11679
  18. Kim, D. H., Ohnishi, S. T., and Ikemoto, N. (1983) Kinetic studies of calcium release from sarcoplasmic reticulum in vitro. J. Biol. Chem. 258, 9662-9668
  19. Kim, S. J., Kim, Y. S., Yuan, J. P., Petralia, R. S., Worley, P. F., et al. (2003) Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426, 285-291 https://doi.org/10.1038/nature02162
  20. Kiselyov, K. I., Shin, D. M., Wang, Y., Pessah, I. N., Allen, P. D., et al. (2000) Gating of store-operated channels by conformational coupling to ryanodine receptors. Mol. Cell 6, 421-431 https://doi.org/10.1016/S1097-2765(00)00041-1
  21. Lam, E., Martin, M. M., Timerman, A. P., Sabers, C., Fleischer, S., et al. (1995) A novel FK506 binding protein can mediate the immunosuppressive effects of FK506 and is associated with the cardiac ryanodine receptor. J. Biol. Chem. 270, 26511-26522 https://doi.org/10.1074/jbc.270.44.26511
  22. Leddy, J. J., Murphy, B. J., Qu, Y., Doucet, J. P., Pratt, C., et al. (1993) A 60 kDa polypeptide of skeletal-muscle sarcoplasmic reticulum is a calmodulin-dependent protein kinase that associates with and phosphorylates several membrane proteins. Biochem. J. 295, 849-856 https://doi.org/10.1042/bj2950849
  23. Li, S., Westwick, J., and Poll, C. (2003) Transient receptor potential (TRP) channels as potential drug targets in respiratory disease. Cell Calcium 33, 551-558 https://doi.org/10.1016/S0143-4160(03)00060-5
  24. Li, Y., Jia, Y. C., Cui, K., Li, N., Zheng, Z. Y., et al. (2005) Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434, 894-898 https://doi.org/10.1038/nature03477
  25. Lokuta, A. J., Rogers, T. B., Lederer, W. J., and Valdivia, H. H. (1995) Modulation of cardiac ryanodine receptors of swine and rabbit by a phosphorylation-dephosphorylation mechanism. J. Physiol. 487, 609-622 https://doi.org/10.1113/jphysiol.1995.sp020904
  26. Louvet, L. and Collin, T. (2005) Involvement of ryanodine receptors in IP3-mediated calcium signalling in neurons. A modelling approach. Neurosci. Lett. 381, 149-153 https://doi.org/10.1016/j.neulet.2005.02.024
  27. Ma, H. T., Patterson, R. L., van Rossum, D. B., Birnbaumer, L., Mikoshiba, K., et al. (2000) Requirement of the inositol trisphosphate receptor for activation of store-operated $Ca^{2+}$ channels. Science 287, 1647-1651 https://doi.org/10.1126/science.287.5458.1647
  28. MacLennan, D. H. and Phillips, M. S. (1992) Malignant hyperthermia. Science 256, 789-794 https://doi.org/10.1126/science.1589759
  29. Marx, S. O., Reiken, S., Hisamatsu, Y., Jayaraman, T., Burkhoff, D., et al. (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365-376 https://doi.org/10.1016/S0092-8674(00)80847-8
  30. Meissner, G. (1986) Evidence of a role for calmodulin in the regulation of calcium release from skeletal muscle sarcoplasmic reticulum. Biochemistry 25, 244-251 https://doi.org/10.1021/bi00349a034
  31. Montell, C. (2005) The TRP superfamily of cation channels. Sci. STKE 2005, re3
  32. Nishi, M., Mizushima, A., Nakagawara, K., and Takeshima, H. (2000) Characterization of human junctophilin subtype genes. Biochem. Biophys. Res. Commun. 273, 920-927 https://doi.org/10.1006/bbrc.2000.3011
  33. Obukhov, A. G. and Nowycky, M. C. (2004) TRPC5 activation kinetics are modulated by the scaffolding protein ezrin/ radixin/moesin-binding phosphoprotein-50 (EBP50). J. Cell. Physiol. 201, 227-235 https://doi.org/10.1002/jcp.20057
  34. Paria, B. C., Vogel, S. M., Ahmmed, G. U., Alamgir, S., Shroff, J., et al. (2004) Tumor necrosis factor-alpha-induced TRPC1 expression amplifies store-operated $Ca^{2+}$ influx and endothelial permeability. Am. J. Physiol. Lung Cell. Mol. Physiol. 287, L1303-1313 https://doi.org/10.1152/ajplung.00240.2004
  35. Protasi, F., Takekura, H., Wang, Y., Chen, S. R., Meissner, G., et al. (2000) RYR1 and RYR3 have different roles in the assembly of calcium release units of skeletal muscle. Biophys. J. 79, 2494-2508 https://doi.org/10.1016/S0006-3495(00)76491-5
  36. Ramsey, I. S., Delling, M., and Clapham, D. E. (2006) An introduction to TRP channels. Annu. Rev. Physiol. 68, 619-647 https://doi.org/10.1146/annurev.physiol.68.040204.100431
  37. Reading, S. A., Earley, S., Waldron, B. J., Welsh, D. G., and Brayden, J. E. (2005) TRPC3 mediates pyrimidine receptorinduced depolarization of cerebral arteries. Am. J. Physiol. Heart. Circ. Physiol. 288, H2055-2061 https://doi.org/10.1152/ajpheart.00861.2004
  38. Sampieri, A., Diaz-Munoz, M., Antaramian, A., and Vaca, L. (2005) The foot structure from the type 1 ryanodine receptor is required for functional coupling to store-operated channels. J. Biol. Chem. 280, 24804-24815 https://doi.org/10.1074/jbc.M501487200
  39. Schaefer, M., Plant, T. D., Obukhov, A. G., Hofmann, T., Gudermann, T., et al. (2000) Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J. Biol. Chem. 275, 17517-17526 https://doi.org/10.1074/jbc.275.23.17517
  40. Seiler, S., Wegener, A. D., Whang, D. D., Hathaway, D. R., and Jones, L. R. (1984) High molecular weight proteins in cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles bind calmodulin, are phosphorylated, and are degraded by $Ca^{2+}$-activated protease. J. Biol. Chem. 259, 8550-8557
  41. Smith, J. S., Coronado, R., and Meissner, G. (1986) Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. Activation by $Ca^{2+}$ and ATP and modulation by $Mg^{2+}$. J. Gen. Physiol. 88, 573-588 https://doi.org/10.1085/jgp.88.5.573
  42. Stange, M., Xu, L., Balshaw, D., Yamaguchi, N., and Meissner, G. (2003) Characterization of recombinant skeletal muscle (Ser-2843) and cardiac muscle (Ser-2809) ryanodine receptor phosphorylation mutants. J. Biol. Chem. 278, 51693-51702 https://doi.org/10.1074/jbc.M310406200
  43. Sutko, J. L. and Airey, J. A. (1996) Ryanodine receptor $Ca^{2+}$ release channels: does diversity in form equal diversity in function? Physiol. Rev. 76, 1027-1071 https://doi.org/10.1152/physrev.1996.76.4.1027
  44. Sutton, K. A., Jungnickel, M. K., Wang, Y., Cullen, K., Lambert, S., et al. (2004) Enkurin is a novel calmodulin and TRPC channel binding protein in sperm. Dev. Biol. 274, 426-435 https://doi.org/10.1016/j.ydbio.2004.07.031
  45. Tiso, N., Stephan, D. A., Nava, A., Bagattin, A., Devaney, J. M., et al. (2001) Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum. Mol. Genet. 10, 189-194 https://doi.org/10.1093/hmg/10.3.189
  46. Tong, J., Oyamada, H., Demaurex, N., Grinstein, S., McCarthy, T. V., et al. (1997) Caffeine and halothane sensitivity of intracellular $Ca^{2+}$ release is altered by 15 calcium release channel (ryanodine receptor) mutations associated with malignant hyperthermia and/or central core disease. J. Biol. Chem. 272, 26332-26339 https://doi.org/10.1074/jbc.272.42.26332
  47. Trebak, M., Bird, G. S., McKay, R. R., and Putney, J. W., Jr. (2002) Comparison of human TRPC3 channels in receptoractivated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J. Biol. Chem. 277, 21617-21623 https://doi.org/10.1074/jbc.M202549200
  48. Wang, J. and Best, P. M. (1992) Inactivation of the sarcoplasmic reticulum calcium channel by protein kinase. Nature 359, 739-741 https://doi.org/10.1038/359739a0
  49. Ward, C. W., Protasi, F., Castillo, D., Wang, Y., Chen, S. R., et al. (2001) Type 1 and type 3 ryanodine receptors generate different $Ca^{2+}$ release event activity in both intact and permeabilized myotubes. Biophys. J. 81, 3216-3230 https://doi.org/10.1016/S0006-3495(01)75957-7
  50. Witcher, D. R., Kovacs, R. J., Schulman, H., Cefali, D. C., and Jones, L. R. (1991) Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J. Biol. Chem. 266, 11144-11152
  51. Zitt, C., Zobel, A., Obukhov, A. G., Harteneck, C., Kalkbrenner, F., et al. (1996) Cloning and functional expression of a human $Ca^{2+}$-permeable cation channel activated by calcium store depletion. Neuron 16, 1189-1196 https://doi.org/10.1016/S0896-6273(00)80145-2
  52. Zorzato, F., Fujii, J., Otsu, K., Phillips, M., Green, N. M., et al. (1990) Molecular cloning of cDNA encoding human and rabbit forms of the $Ca^{2+}$ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 265, 2244-2256
  53. Imagawa, T., Smith, J. S., Coronado, R., and Campbell, K. P. (1987) Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the $Ca^{2+}$-permeable pore of the calcium release channel. J. Biol. Chem. 262, 16636-16643
  54. Joffe, M., Savage, N., and Silove, M. (1992) The biochemistry of malignant hyperthermia: recent concepts. Int. J. Biochem. 24, 387-398 https://doi.org/10.1016/0020-711X(92)90029-Z
  55. Liman, E. R. (2003) Regulation by voltage and adenine nucleotides of a $Ca^{2+}$-activated cation channel from hamster vomeronasal sensory neurons. J. Physiol. 548, 777-787 https://doi.org/10.1113/jphysiol.2002.037119
  56. Nagasaki, K. and Kasai, M. (1983) Fast release of calcium from sarcoplasmic reticulum vesicles monitored by chlortetracycline fluorescence. J. Biochem. (Tokyo) 94, 1101-1109 https://doi.org/10.1093/oxfordjournals.jbchem.a134453
  57. Okada, T., Shimizu, S., Wakamori, M., Maeda, A., Kurosaki, T., et al. (1998) Molecular cloning and functional characterization of a novel receptor-activated TRP $Ca^{2+}$ channel from mouse brain. J. Biol. Chem. 273, 10279-10287 https://doi.org/10.1074/jbc.273.17.10279
  58. Orlova, E. V., Serysheva, I. I., van Heel, M., Hamilton, S. L., and Chiu, W. (1996) Two structural configurations of the skeletal muscle calcium release channel. Nat. Struct. Biol. 3, 547-552 https://doi.org/10.1038/nsb0696-547
  59. Gailly, P. (2002) New aspects of calcium signaling in skeletal muscle cells: implications in Duchenne muscular dystrophy. Biochim. Biophys. Acta 1600, 38-44 https://doi.org/10.1016/S1570-9639(02)00442-9
  60. Zeng, F., Xu, S. Z., Jackson, P. K., McHugh, D., Kumar, B., et al. (2004) Human TRPC5 channel activated by a multiplicity of signals in a single cell. J. Physiol. 559, 739-750 https://doi.org/10.1113/jphysiol.2004.065391
  61. Lai, F. A., Erickson, H. P., Rousseau, E., Liu, Q. Y., and Meissner, G. (1988) Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331, 315-319 https://doi.org/10.1038/331315a0
  62. Lussier, M. P., Cayouette, S., Lepage, P. K., Bernier, C. L., Francoeur, N., et al. (2005) MxA, a member of the dynamin superfamily, interacts with the ankyrin-like repeat domain of TRPC. J. Biol. Chem. 280, 19393-19400 https://doi.org/10.1074/jbc.M500391200
  63. Cannell, M. B., Cheng, H., and Lederer, W. J. (1995) The control of calcium release in heart muscle. Science 268, 1045-1049 https://doi.org/10.1126/science.7754384
  64. Deufel, T., Sudbrak, R., Feist, Y., Rubsam, B., Du Chesne, I., et al. (1995) Discordance, in a malignant hyperthermia pedigree, between in vitro contracture-test phenotypes and haplotypes for the MHS1 region on chromosome 19q12-13.2, comprising the C1840T transition in the RYR1 gene. Am. J. Hum. Genet. 56, 1334-1342
  65. Giannini, G., Conti, A., Mammarella, S., Scrobogna, M., and Sorrentino, V. (1995) The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J. Cell Biol. 128, 893-904 https://doi.org/10.1083/jcb.128.5.893
  66. Jayaraman, T., Brillantes, A. M., Timerman, A. P., Fleischer, S., Erdjument-Bromage, H., et al. (1992) FK506 binding protein associated with the calcium release channel (ryanodine receptor). J. Biol. Chem. 267, 9474-9477
  67. Li, H. S., Xu, X. Z., and Montell, C. (1999) Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron 24, 261-273 https://doi.org/10.1016/S0896-6273(00)80838-7
  68. Lucas, P., Ukhanov, K., Leinders-Zufall, T., and Zufall, F. (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40, 551-561 https://doi.org/10.1016/S0896-6273(03)00675-5
  69. Nishida, M., Sugimoto, K., Hara, Y., Mori, E., Morii, T., et al. (2003) Amplification of receptor signalling by $Ca^{2+}$ entrymediated translocation and activation of PLCgamma2 in B lymphocytes. EMBO J. 22, 4677-4688 https://doi.org/10.1093/emboj/cdg457
  70. Sweeney, M., Yu, Y., Platoshyn, O., Zhang, S., McDaniel, S. S., et al. (2002b) Inhibition of endogenous TRP1 decreases capacitative $Ca^{2+}$ entry and attenuates pulmonary artery smooth muscle cell proliferation. Am. J. Physiol. Lung Cell. Mol. Physiol. 283, L144-155
  71. Tiruppathi, C., Freichel, M., Vogel, S. M., Paria, B. C., Mehta, D., et al. (2002) Impairment of store-operated $Ca^{2+}$ entry in TRPC4(-/-) mice interferes with increase in lung microvascular permeability. Circ. Res. 91, 70-76 https://doi.org/10.1161/01.RES.0000023391.40106.A8
  72. Calviello, G. and Chiesi, M. (1989) Rapid kinetic analysis of the calcium-release channels of skeletal muscle sarcoplasmic reticulum: the effect of inhibitors. Biochemistry 28, 1301-1306 https://doi.org/10.1021/bi00429a053
  73. Donoso, P. and Hidalgo, C. (1993) pH-sensitive calcium release in triads from frog skeletal muscle. Rapid filtration studies. J. Biol. Chem. 268, 25432-25438
  74. Freichel, M., Suh, S. H., Pfeifer, A., Schweig, U., Trost, C., et al. (2001) Lack of an endothelial store-operated $Ca^{2+}$ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat. Cell Biol. 3, 121-127 https://doi.org/10.1038/35055019
  75. Harteneck, C. (2003) Proteins modulating TRP channel function. Cell Calcium 33, 303-310 https://doi.org/10.1016/S0143-4160(03)00043-5
  76. Wedel, B. J., Vazquez, G., McKay, R. R., St, J. Bird, G., and Putney, J. W., Jr. (2003) A calmodulin/inositol 1,4,5-trisphosphate (IP3) receptor-binding region targets TRPC3 to the plasma membrane in a calmodulin/IP3 receptor-independent process. J. Biol. Chem. 278, 25758-25765 https://doi.org/10.1074/jbc.M303890200
  77. Xiao, B., Sutherland, C., Walsh, M. P., and Chen, S. R. (2004) Protein kinase A phosphorylation at serine-2808 of the cardiac $Ca^{2+}$-release channel (ryanodine receptor) does not dissociate 12.6-kDa FK506-binding protein (FKBP12.6). Circ. Res. 94, 487-495 https://doi.org/10.1161/01.RES.0000115945.89741.22
  78. Yuan, J. P., Kiselyov, K., Shin, D. M., Chen, J., Shcheynikov, N., et al. (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114, 777-789 https://doi.org/10.1016/S0092-8674(03)00716-5
  79. Kirino, Y., Osakabe, M., and Shimizu, H. (1983) $Ca^{2+}$-induced $Ca^{2+}$ release from fragmented sarcoplasmic reticulum: $Ca^{2+}$- dependent passive $Ca^{2+}$ efflux. J. Biochem (Tokyo). 94, 1111-1118 https://doi.org/10.1093/oxfordjournals.jbchem.a134454
  80. Pape, H. C., Munsch, T., and Budde, T. (2004) Novel vistas of calcium-mediated signalling in the thalamus. Pflugers Arch. 448, 131-138 https://doi.org/10.1007/s00424-003-1234-5
  81. Pessah, I. N., Waterhouse, A. L., and Casida, J. E. (1985) The calcium-ryanodine receptor complex of skeletal and cardiac muscle. Biochem. Biophys. Res. Commun. 128, 449-456 https://doi.org/10.1016/0006-291X(85)91699-7
  82. Clapham, D. E. (2003) TRP channels as cellular sensors. Nature 426, 517-524 https://doi.org/10.1038/nature02196
  83. Dirksen, R. T. (2002) Bi-directional coupling between dihydropyridine receptors and ryanodine receptors. Front. Biosci. 7, d659-670 https://doi.org/10.2741/dirksen
  84. Xiao, B., Zhong, G., Obayashi, M., Yang, D., Chen, K., et al. (2006) Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon beta-adrenergic stimulation in normal and failing hearts. Biochem. J. 396, 7-16 https://doi.org/10.1042/BJ20060116
  85. Inoue, R., Okada, T., Onoue, H., Hara, Y., Shimizu, S., et al. (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor- activated $Ca^{2+}$-permeable cation channel. Circ. Res. 88, 325-332 https://doi.org/10.1161/01.RES.88.3.325
  86. Ma, J., Fill, M., Knudson, C. M., Campbell, K. P., and Coronado, R. (1988) Ryanodine receptor of skeletal muscle is a gap junction-type channel. Science 242, 99-102 https://doi.org/10.1126/science.2459777
  87. Mori, Y., Wakamori, M., Miyakawa, T., Hermosura, M., Hara, Y., et al. (2002) Transient receptor potential 1 regulates capacitative $Ca^{2+}$ entry and $Ca^{2+}$ release from endoplasmic reticulum in B lymphocytes. J. Exp. Med. 195, 673-681 https://doi.org/10.1084/jem.20011758
  88. Mulley, J. C., Kozman, H. M., Phillips, H. A., Gedeon, A. K., McCure, J. A., et al. (1993) Refined genetic localization for central core disease. Am. J. Hum. Genet. 52, 398-405
  89. Protasi, F., Franzini-Armstrong, C., and Allen, P. D. (1998) Role of ryanodine receptors in the assembly of calcium release units in skeletal muscle. J. Cell Biol. 140, 831-842 https://doi.org/10.1083/jcb.140.4.831
  90. Du, G. G., Sandhu, B., Khanna, V. K., Guo, X. H., and MacLennan, D. H. (2002) Topology of the $Ca^{2+}$ release channel of skeletal muscle sarcoplasmic reticulum (RyR1). Proc. Natl. Acad. Sci. USA 99, 16725-16730
  91. Gechtman, Z., Orr, I., and Shoshan-Barmatz, V. (1991) Involvement of protein phosphorylation in activation of $Ca^{2+}$ efflux from sarcoplasmic reticulum. Biochem. J. 276, 97-102 https://doi.org/10.1042/bj2760097
  92. Zucchi, R. and Ronca-Testoni, S. (1997) The sarcoplasmic reticulum $Ca^{2+}$ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol. Rev. 49, 1-51
  93. Lintschinger, B., Balzer-Geldsetzer, M., Baskaran, T., Graier, W. F., Romanin, C., et al. (2000) Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and $Ca^{2+}$-sensitive cation channels. J. Biol. Chem. 275, 27799-27805
  94. Liu, X., Singh, B. B., and Ambudkar, I. S. (2003) TRPC1 is required for functional store-operated $Ca^{2+}$ channels. Role of acidic amino acid residues in the S5-S6 region. J. Biol. Chem. 278, 11337-11343 https://doi.org/10.1074/jbc.M213271200
  95. Fabiato, A. (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol. 245, C1-14
  96. Laitinen, P. J., Brown, K. M., Piippo, K., Swan, H., Devaney, J. M., et al. (2001) Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 103, 485-490 https://doi.org/10.1161/01.CIR.103.4.485
  97. Lee-Kwon, W., Wade, J. B., Zhang, Z., Pallone, T. L., and Weinman, E. J. (2005) Expression of TRPC4 channel protein that interacts with NHERF-2 in rat descending vasa recta. Am. J. Physiol. Cell Physiol. 288, C942-949 https://doi.org/10.1152/ajpcell.00417.2004
  98. Pedersen, S. F., Owsianik, G., and Nilius, B. (2005) TRP channels: an overview. Cell Calcium 38, 233-252 https://doi.org/10.1016/j.ceca.2005.06.028
  99. Pieske, B., Kretschmann, B., Meyer, M., Holubarsch, C., Weirich, J., et al. (1995) Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation 92, 1169-1178 https://doi.org/10.1161/01.CIR.92.5.1169
  100. Sewell, T. J., Lam, E., Martin, M. M., Leszyk, J., Weidner, J., et al. (1994) Inhibition of calcineurin by a novel FK-506-binding protein. J. Biol. Chem. 269, 21094-21102
  101. Shi, J., Mori, E., Mori, Y., Mori, M., Li, J., et al. (2004) Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J. Physiol. 561, 415-432 https://doi.org/10.1113/jphysiol.2004.075051
  102. Sweeney, M., McDaniel, S. S., Platoshyn, O., Zhang, S., Yu, Y., et al. (2002a) Role of capacitative $Ca^{2+}$ entry in bronchial contraction and remodeling. J. Appl. Physiol. 92, 1594-1602 https://doi.org/10.1152/japplphysiol.00722.2001
  103. Valdivia, H. H., Kaplan, J. H., Ellis-Davies, G. C., and Lederer, W. J. (1995) Rapid adaptation of cardiac ryanodine receptors: modulation by $Mg^{2+}$ and phosphorylation. Science 267, 1997-2000 https://doi.org/10.1126/science.7701323
  104. Welsh, D. G., Morielli, A. D., Nelson, M. T., and Brayden, J. E. (2002) Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ. Res. 90, 248-250 https://doi.org/10.1161/hh0302.105662
  105. Winn, M. P., Conlon, P. J., Lynn, K. L., Farrington, M. K., Creazzo, T., et al. (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801-1804 https://doi.org/10.1126/science.1106215
  106. Liu, D., Scholze, A., Zhu, Z., Krueger, K., Thilo, F., et al. (2006) Transient receptor potential channels in essential hypertension. J. Hypertens. 24, 1115-1124 https://doi.org/10.1097/01.hjh.0000226202.80689.8f
  107. Maroto, R., Raso, A., Wood, T. G., Kurosky, A., Martinac, B., et al. (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat. Cell Biol. 7, 179-185 https://doi.org/10.1038/ncb1218
  108. Mayrleitner, M., Timerman, A. P., Wiederrecht, G., and Fleischer, S. (1994) The calcium release channel of sarcoplasmic reticulum is modulated by FK-506 binding protein: effect of FKBP- 12 on single channel activity of the skeletal muscle ryanodine receptor. Cell Calcium 15, 99-108 https://doi.org/10.1016/0143-4160(94)90048-5
  109. Nilius, B., Voets, T., and Peters, J. (2005) TRP channels in disease. Sci. STKE 2005, re8
  110. Wehrens, X. H., Lehnart, S. E., Huang, F., Vest, J. A., Reiken, S. R., et al. (2003) FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise- induced sudden cardiac death. Cell 113, 829-840 https://doi.org/10.1016/S0092-8674(03)00434-3
  111. Welsh, D. G. and Brayden, J. E. (2001) Mechanisms of coronary artery depolarization by uridine triphosphate. Am. J. Physiol. Heart Circ. Physiol. 280, H2545-2553
  112. Zhang, Z., Tang, J., Tikunova, S., Johnson, J. D., Chen, Z., et al. (2001) Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc. Natl. Acad. Sci. USA 98, 3168-3173
  113. Quane, K. A., Keating, K. E., Healy, J. M., Manning, B. M., Krivosic-Horber, R., et al. (1994) Mutation screening of the RYR1 gene in malignant hyperthermia: detection of a novel Tyr to Ser mutation in a pedigree with associated central cores. Genomics 23, 236-239 https://doi.org/10.1006/geno.1994.1483
  114. Sandow, A. (1965) Excitation-contraction coupling in skeletal muscle. Pharmacol. Rev. 17, 265-320
  115. Allen, P. D. (2003) Not all sudden death is the same. Circ. Res. 93, 484-486 https://doi.org/10.1161/01.RES.0000093184.27194.42
  116. Block, B. A., Imagawa, T., Campbell, K. P., and Franzini- Armstrong, C. (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/ sarcoplasmic reticulum junction in skeletal muscle. J. Cell Biol. 107, 2587-2600 https://doi.org/10.1083/jcb.107.6.2587
  117. Fuentes, O., Valdivia, C., Vaughan, D., Coronado, R., and Valdivia, H. H. (1994) Calcium-dependent block of ryanodine receptor channel of swine skeletal muscle by direct binding of calmodulin. Cell Calcium 15, 305-316 https://doi.org/10.1016/0143-4160(94)90070-1
  118. Hadad, N., Zable, A. C., Abramson, J. J., and Shoshan-Barmatz, V. (1994) $Ca^{2+}$ binding sites of the ryanodine receptor/$Ca^{2+}$ release channel of sarcoplasmic reticulum. Low affinity binding site(s) as probed by terbium fluorescence. J. Biol. Chem. 269, 24864-24869
  119. Kausch, K., Lehmann-Horn, F., Janka, M., Wieringa, B., Grimm, T., et al. (1991) Evidence for linkage of the central core disease locus to the proximal long arm of human chromosome 19. Genomics 10, 765-769 https://doi.org/10.1016/0888-7543(91)90461-M
  120. Munsch, T., Freichel, M., Flockerzi, V., and Pape, H. C. (2003) Contribution of transient receptor potential channels to the control of GABA release from dendrites. Proc. Natl. Acad. Sci. USA 100, 16065-16070
  121. Sumbilla, C. and Inesi, G. (1987) Rapid filtration measurements of $Ca^{2+}$ release from cisternal sarcoplasmic reticulum vesicles. FEBS Lett. 210, 31-36 https://doi.org/10.1016/0014-5793(87)81292-9
  122. Garcia, R. L. and Schilling, W. P. (1997) Differential expression of mammalian TRP homologues across tissues and cell lines. Biochem. Biophys. Res. Commun. 239, 279-283 https://doi.org/10.1006/bbrc.1997.7458
  123. Meissner, G. (1994) Ryanodine receptor/$Ca^{2+}$ release channels and their regulation by endogenous effectors. Annu. Rev. Physiol. 56, 485-508 https://doi.org/10.1146/annurev.ph.56.030194.002413
  124. Plank, B., Wyskovsky, W., Hohenegger, M., Hellmann, G., and Suko, J. (1988) Inhibition of calcium release from skeletal muscle sarcoplasmic reticulum by calmodulin. Biochim. Biophys. Acta 938, 79-88 https://doi.org/10.1016/0005-2736(88)90124-1
  125. Rosker, C., Graziani, A., Lukas, M., Eder, P., Zhu, M. X., et al. (2004) $Ca^{2+}$ signaling by TRPC3 involves $Na^+$ entry and local coupling to the $Na^+$/$Ca^{2+}$ exchanger. J. Biol. Chem. 279, 13696-13704 https://doi.org/10.1074/jbc.M308108200
  126. Strubing, C., Krapivinsky, G., Krapivinsky, L., and Clapham, D. E. (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29, 645-655 https://doi.org/10.1016/S0896-6273(01)00240-9
  127. Carter, S., Colyer, J., and Sitsapesan, R. (2006) Maximum phosphorylation of the cardiac ryanodine receptor at serine-2809 by protein kinase A produces unique modifications to channel gating and conductance not observed at lower levels of phosphorylation. Circ. Res. (in press)
  128. Vandebrouck, C., Martin, D., Colson-Van Schoor, M., Debaix, H., and Gailly, P. (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J. Cell Biol. 158, 1089-1096 https://doi.org/10.1083/jcb.200203091
  129. Zimanyi, I. and Pessah, I. N. (1991) Pharmacological characterization of the specific binding of [3H]ryanodine to rat brain microsomal membranes. Brain Res. 561, 181-191 https://doi.org/10.1016/0006-8993(91)91594-Q
  130. Okada, T., Inoue, R., Yamazaki, K., Maeda, A., Kurosaki, T., et al. (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. $Ca^{2+}$-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J. Biol. Chem. 274, 27359-27370 https://doi.org/10.1074/jbc.274.39.27359
  131. Patel, J. R., Coronado, R., and Moss, R. L. (1995) Cardiac sarcoplasmic reticulum phosphorylationincreases $Ca^{2+}$ release induced by flash photolysis of nitr-5. Circ. Res. 77, 943-949 https://doi.org/10.1161/01.RES.77.5.943
  132. Rousseau, E., Smith, J. S., Henderson, J. S., and Meissner, G. (1986) Single channel and 45$Ca^{2+}$ flux measurements of the cardiac sarcoplasmic reticulum calcium channel. Biophys. J. 50, 1009-1014 https://doi.org/10.1016/S0006-3495(86)83543-3
  133. Strubing, C., Krapivinsky, G., Krapivinsky, L., and Clapham, D. E. (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J. Biol. Chem. 278, 39014-39019 https://doi.org/10.1074/jbc.M306705200
  134. Takasago, T., Imagawa, T., Furukawa, K., Ogurusu, T., and Shigekawa, M. (1991) Regulation of the cardiac ryanodine receptor by protein kinase-dependent phosphorylation. J. Biochem(Tokyo). 109, 163-170
  135. Herrmann-Frank, A. and Varsanyi, M. (1993) Enhancement of $Ca^{2+}$ release channel activity by phosphorylation of the skeletal muscle ryanodine receptor. FEBS Lett. 332, 237-242 https://doi.org/10.1016/0014-5793(93)80640-G
  136. Hill, A. P. and Sitsapesan, R. (2002) DIDS modifies the conductance, gating, and inactivation mechanisms of the cardiac ryanodine receptor. Biophys. J. 82, 3037-3047 https://doi.org/10.1016/S0006-3495(02)75644-0
  137. Lee, E. H., Rho, S. H., Kwon, S. J., Eom, S. H., Allen, P. D., et al. (2004b) N-terminal region of FKBP12 is essential for binding to the skeletal ryanodine receptor. J. Biol. Chem. 279, 26481-26488 https://doi.org/10.1074/jbc.M309574200
  138. Leypold, B. G., Yu, C. R., Leinders-Zufall, T., Kim, M. M., Zufall, F., et al. (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc. Natl. Acad. Sci. USA 99, 6376- 6381
  139. Pan, Z., Yang, D., Nagaraj, R. Y., Nosek, T. A., Nishi, M., et al. (2002) Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat. Cell Biol. 4, 379-383 https://doi.org/10.1038/ncb788
  140. Seifert, J. and Casida, J. E. (1986) $Ca^{2+}$-dependent ryanodine binding site: soluble preparation from rabbit cardiac sarcoplasmic reticulum. Biochim. Biophys. Acta 861, 399-405 https://doi.org/10.1016/0005-2736(86)90447-5
  141. Sitsapesan, R. (1999) Similarities in the effects of DIDS, DBDS and suramin on cardiac ryanodine receptor function. J. Membr. Biol. 168, 159-168 https://doi.org/10.1007/s002329900506
  142. Avila, G., Lee, E. H., Perez, C. F., Allen, P. D., and Dirksen, R. T. (2003) FKBP12 binding to RyR1 modulates excitation-contraction coupling in mouse skeletal myotubes. J. Biol. Chem. 278, 22600-22608 https://doi.org/10.1074/jbc.M205866200
  143. Cosens, D. J. and Manning, A. (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224, 285-287 https://doi.org/10.1038/224285a0
  144. Dietrich, A., Mederos, Y. S. M., Gollasch, M., Gross, V., Storch, U., et al. (2005) Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol. Cell. Biol. 25, 6980-6989 https://doi.org/10.1128/MCB.25.16.6980-6989.2005
  145. Hasenfuss, G., Mulieri, L. A., Leavitt, B. J., Allen, P. D., Holubarsch, C., et al. (1992) Contractile protein function in failing and nonfailing human myocardium. Basic. Res. Cardiol. 87, 107-116
  146. Venkatachalam, K., van Rossum, D. B., Patterson, R. L., Ma, H. T., and Gill, D. L. (2002) The cellular and molecular basis of store-operated calcium entry. Nat. Cell Biol. 4, E263-272 https://doi.org/10.1038/ncb1102-e263
  147. Ma, J. (1993) Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle. J. Gen. Physiol. 102, 1031-1056 https://doi.org/10.1085/jgp.102.6.1031
  148. Nilius, B. (2004) Store-operated $Ca^{2+}$ entry channels: still elusive! Sci. STKE 2004, pe36
  149. Dietrich, A., Mederosy Schnitzler, M., Emmel, J., Kalwa, H., Hofmann, T., et al. (2003) N-linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. J. Biol. Chem. 278, 47842-47852 https://doi.org/10.1074/jbc.M302983200
  150. Xu, S. Z. and Beech, D. J. (2001) TrpC1 is a membrane-spanning subunit of store-operated $Ca^{2+}$ channels in native vascular smooth muscle cells. Circ. Res. 88, 84-87 https://doi.org/10.1161/hh1201.093511
  151. Inui, M., Saito, A., and Fleischer, S. (1987) Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J. Biol. Chem. 262, 15637-15642
  152. Ma, H. T., Venkatachalam, K., Parys, J. B., and Gill, D. L. (2002) Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydi-phenyl borate in DT40 lymphocytes. J. Biol. Chem. 277, 6915-6922 https://doi.org/10.1074/jbc.M107755200
  153. Maruyama, Y., Nakanishi, Y., Walsh, E. J., Wilson, D. P., Welsh, D. G., et al. (2006) Heteromultimeric TRPC6-TRPC7 channels contribute to arginine vasopressin-induced cation current of A7r5 vascular smooth muscle cells. Circ. Res. 9 (in press)
  154. Protasi, F., Paolini, C., Nakai, J., Beam, K. G., Franzini- Armstrong, C., et al. (2002) Multiple regions of RyR1 mediate functional and structural interactions with alpha(1S)-dihydropyridine receptors in skeletal muscle. Biophys. J. 83, 3230-3244 https://doi.org/10.1016/S0006-3495(02)75325-3
  155. Takeshima, H., Nishimura, S., Matsumoto, T., Ishida, H., Kangawa, K., et al. (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339, 439-445 https://doi.org/10.1038/339439a0
  156. Beech, D. J., Muraki, K., and Flemming, R. (2004) Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J. Physiol. 559, 685-706 https://doi.org/10.1113/jphysiol.2004.068734
  157. Brady, A. J. (1964) Excitation and excitation-contraction coupling in cardiac muscle. Annu. Rev. Physiol. 26, 341-356 https://doi.org/10.1146/annurev.ph.26.030164.002013
  158. Collins, J. H. (1991) Sequence analysis of the ryanodine receptor: possible association with a 12K, FK506-binding immunophilin/ protein kinase C inhibitor. Biochem. Biophys. Res. Commun. 178, 1288-1290 https://doi.org/10.1016/0006-291X(91)91033-9
  159. Ward, C. W., Feng, W., Tu, J., Pessah, I. N., Worley, P. K., et al. (2004) Homer protein increases activation of $Ca^{2+}$ sparks in permeabilized skeletal muscle. J. Biol. Chem. 279, 5781-5787 https://doi.org/10.1074/jbc.M311422200
  160. Hofmann, T., Schaefer, M., Schultz, G., and Gudermann, T. (2000b) Transient receptor potential channels as molecular substrates of receptor-mediated cation entry. J. Mol. Med. 78, 14-25 https://doi.org/10.1007/s001090050378
  161. Jung, S., Muhle, A., Schaefer, M., Strotmann, R., Schultz, G., et al. (2003) Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J. Biol. Chem. 278, 3562-3571 https://doi.org/10.1074/jbc.M211484200
  162. Lokuta, A. J., Meyers, M. B., Sander, P. R., Fishman, G. I., and Valdivia, H. H. (1997) Modulation of cardiac ryanodine receptors by sorcin. J. Biol. Chem. 272, 25333-25338 https://doi.org/10.1074/jbc.272.40.25333
  163. Meissner, G. (1984) Adenine nucleotide stimulation of $Ca^{2+}$- induced $Ca^{2+}$ release in sarcoplasmic reticulum. J. Biol. Chem. 259, 2365-2374
  164. Nakai, J., Imagawa, T., Hakamat, Y., Shigekawa, M., Takeshima, H., et al. (1990) Primary structure and functional expression from cDNA of the cardiac ryanodine receptor/ calcium release channel. FEBS Lett. 271, 169-177 https://doi.org/10.1016/0014-5793(90)80399-4
  165. Nakai, J., Dirksen, R. T., Nguyen, H. T., Pessah, I. N., Beam, K. G., et al. (1996) Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380, 72-75 https://doi.org/10.1038/380072a0
  166. Priori, S. G., Napolitano, C., Tiso, N., Memmi, M., Vignati, G., et al. (2001) Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103, 196-200 https://doi.org/10.1161/01.CIR.103.2.196
  167. Reiser, J., Polu, K. R., Moller, C. C., Kenlan, P., Altintas, M. M., et al. (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat. Genet. 37, 739-744 https://doi.org/10.1038/ng1592
  168. Timerman, A. P., Ogunbumni, E., Freund, E., Wiederrecht, G., Marks, A. R., et al. (1993) The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 268, 22992-22999
  169. Timerman, A. P., Jayaraman, T., Wiederrecht, G., Onoue, H., Marks, A. R., et al. (1994) The ryanodine receptor from canine heart sarcoplasmic reticulum is associated with a novel FK-506 binding protein. Biochem. Biophys. Res. Commun. 198, 701-706 https://doi.org/10.1006/bbrc.1994.1101
  170. Grabner, M., Dirksen, R. T., Suda, N., and Beam, K. G. (1999) The II-III loop of the skeletal muscle dihydropyridine receptor is responsible for the Bi-directional coupling with the ryanodine receptor. J. Biol. Chem. 274, 21913-21919 https://doi.org/10.1074/jbc.274.31.21913
  171. Zhu, X., Jiang, M., Peyton, M., Boulay, G., Hurst, R., et al. (1996) trp, a novel mammalian gene family essential for agonist- activated capacitative $Ca^{2+}$ entry. Cell 85, 661-671 https://doi.org/10.1016/S0092-8674(00)81233-7
  172. Lee, E. H., Lopez, J. R., Li, J., Protasi, F., Pessah, I. N., et al. (2004a) Conformational coupling of DHPR and RyR1 in skeletal myotubes is influenced by long-range allosterism: evidence for a negative regulatory module. Am. J. Physiol. Cell Physiol. 286, C179-189 https://doi.org/10.1152/ajpcell.00176.2003
  173. Moutin, M. J. and Dupont, Y. (1988) Rapid filtration studies of $Ca^{2+}$-induced $Ca^{2+}$ release from skeletal sarcoplasmic reticulum. Role of monovalent ions. J. Biol. Chem. 263, 4228- 4235
  174. Oyamada, H., Murayama, T., Takagi, T., Iino, M., Iwabe, N., et al. (1994) Primary structure and distribution of ryanodine-binding protein isoforms of the bullfrog skeletal muscle. J. Biol. Chem. 269, 17206-17214
  175. Quane, K. A., Healy, J. M., Keating, K. E., Manning, B. M., Couch, F. J., et al. (1993) Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat. Genet. 5, 51-55 https://doi.org/10.1038/ng0993-51
  176. Samso, M., Wagenknecht, T., and Allen, P. D. (2005) Internal structure and visualization of transmembrane domains of the RyR1 calcium release channel by cryo-EM. Nat. Struct. Mol. Biol. 12, 539-544 https://doi.org/10.1038/nsmb938
  177. Schneider, M. F. (1994) Control of calcium release in functioning skeletal muscle fibers. Annu. Rev. Physiol. 56, 463-484 https://doi.org/10.1146/annurev.ph.56.030194.002335
  178. Takeshima, H., Iino, M., Takekura, H., Nishi, M., Kuno, J., et al. (1994) Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodinereceptor gene. Nature 369, 556-559 https://doi.org/10.1038/369556a0
  179. Franzini-Armstrong, C. and Kish, J. W. (1995) Alternate disposition of tetrads in peripheral couplings of skeletal muscle. J. Muscle Res. Cell Motil. 16, 319-324 https://doi.org/10.1007/BF00121140
  180. Yu, Y., Fantozzi, I., Remillard, C. V., Landsberg, J. W., Kunichika, N., et al. (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc. Natl. Acad. Sci. USA 101, 13861-13866
  181. Lee, E. H., Cherednichenko, G., Pessah, I. N., and Allen, P. D. (2006) Functional coupling between TRPC3 and RyR1 regulates the expressions of key triadic proteins. J. Biol. Chem. 281, 10042-10048 https://doi.org/10.1074/jbc.M600981200
  182. Morales-Tlalpan, V., Arellano, R. O., and Diaz-Munoz, M. (2005) Interplay between ryanodine and IP3 receptors in ATPstimulated mouse luteinized-granulosa cells. Cell Calcium 37, 203-213 https://doi.org/10.1016/j.ceca.2004.10.001
  183. Philipp, S., Strauss, B., Hirnet, D., Wissenbach, U., Mery, L., et al. (2003) TRPC3 mediates T-cell receptor-dependent calcium entry in human T-lymphocytes. J. Biol. Chem. 278, 26629-26638 https://doi.org/10.1074/jbc.M304044200
  184. Smith, J. S., Imagawa, T., Ma, J., Fill, M., Campbell, K. P., et al. (1988) Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum. J. Gen. Physiol. 92, 1-26 https://doi.org/10.1085/jgp.92.1.1
  185. Suko, J., Maurer-Fogy, I., Plank, B., Bertel, O., Wyskovsky, W., et al. (1993) Phosphorylation of serine 2843 in ryanodine receptor- calcium release channel of skeletal muscle by cAMP-, cGMP- and CaM-dependent protein kinase. Biochim. Biophys. Acta 1175, 193-206 https://doi.org/10.1016/0167-4889(93)90023-I
  186. Tang, Y., Tang, J., Chen, Z., Trost, C., Flockerzi, V., et al. (2000) Association of mammalian trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J. Biol. Chem. 275, 37559-37564 https://doi.org/10.1074/jbc.M006635200
  187. Bezzerides, V. J., Ramsey, I. S., Kotecha, S., Greka, A., and Clapham, D. E. (2004) Rapid vesicular translocation and insertion of TRP channels. Nat. Cell Biol. 6, 709-720 https://doi.org/10.1038/ncb1150
  188. Brillantes, A. B., Ondrias, K., Scott, A., Kobrinsky, E., Ondriasova, E., et al. (1994) Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77, 513-523 https://doi.org/10.1016/0092-8674(94)90214-3
  189. Vannier, B., Peyton, M., Boulay, G., Brown, D., Qin, N., et al. (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative $Ca^{2+}$ entry channel. Proc. Natl. Acad. Sci. USA 96, 2060-2064
  190. Vazquez, G., Wedel, B. J., Kawasaki, B. T., Bird, G. S., and Putney, J. W., Jr. (2004) Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels. J. Biol. Chem. 279, 40521-40528 https://doi.org/10.1074/jbc.M405280200
  191. Wagenknecht, T., Carazo, J. M., Radermacher, M., and Frank, J. (1989) Three-dimensional reconstruction of the ribosome from Escherichia coli. Biophys. J. 55, 455-464 https://doi.org/10.1016/S0006-3495(89)82839-5
  192. Li, S., Westwick, J., Cox, B., and Poll, C. T. (2004) TRP channels as drug targets. Novartis Found. Symp. 258, 204-213
  193. Otsu, K., Willard, H. F., Khanna, V. K., Zorzato, F., Green, N. M., et al. (1990) Molecular cloning of cDNA encoding the $Ca^{2+}$ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J. Biol. Chem. 265, 13472-13483
  194. Rios, E. and Pizarro, G. (1991) Voltage sensor of excitationcontraction coupling in skeletal muscle. Physiol. Rev. 71, 849-908 https://doi.org/10.1152/physrev.1991.71.3.849
  195. Shenolikar, S., Voltz, J. W., Cunningham, R., and Weinman, E. J. (2004) Regulation of ion transport by the NHERF family of PDZ proteins. Physiology (Bethesda) 19, 362-369 https://doi.org/10.1152/physiol.00020.2004
  196. Greka, A., Navarro, B., Oancea, E., Duggan, A., and Clapham, D. E. (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat. Neurosci. 6, 837- 845 https://doi.org/10.1038/nn1092
  197. Hassock, S. R., Zhu, M. X., Trost, C., Flockerzi, V., and Authi, K. S. (2002) Expression and role of TRPC proteins in human platelets: evidence that TRPC6 forms the store-independent calcium entry channel. Blood 100, 2801-2811 https://doi.org/10.1182/blood-2002-03-0723
  198. Venkatachalam, K., Zheng, F., and Gill, D. L. (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J. Biol. Chem. 278, 29031-29040 https://doi.org/10.1074/jbc.M302751200
  199. Wang, G. X. and Poo, M. M. (2005) Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 434, 898-904 https://doi.org/10.1038/nature03478
  200. Hofmann, T., Schaefer, M., Schultz, G., and Gudermann, T. (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc. Natl. Acad. Sci. USA 99, 7461-7466
  201. Keating, K. E., Quane, K. A., Manning, B. M., Lehane, M., Hartung, E., et al. (1994) Detection of a novel RYR1 mutation in four malignant hyperthermia pedigrees. Hum. Mol. Genet. 3, 1855-1858 https://doi.org/10.1093/hmg/3.10.1855
  202. Klein, M. G., Cheng, H., Santana, L. F., Jiang, Y. H., Lederer, W. J., et al. (1996) Two mechanisms of quantized calcium release in skeletal muscle. Nature 379, 455-458 https://doi.org/10.1038/379455a0
  203. Ledbetter, M. W., Preiner, J. K., Louis, C. F., and Mickelson, J. R. (1994) Tissue distribution of ryanodine receptor isoforms and alleles determined by reverse transcription polymerase chain reaction. J. Biol. Chem. 269, 31544-31551
  204. Liu, Q. Y., Lai, F. A., Rousseau, E., Jones, R. V., and Meissner, G. (1989) Multiple conductance states of the purified calcium release channel complex from skeletal sarcoplasmic reticulum. Biophys. J. 55, 415-424 https://doi.org/10.1016/S0006-3495(89)82835-8
  205. Meissner, G. and Henderson, J. S. (1987) Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on $Ca^{2+}$ and is modulated by $Mg^{2+}$, adenine nucleotide, and calmodulin. J. Biol. Chem. 262, 3065-3073
  206. Stowers, L., Holy, T. E., Meister, M., Dulac, C., and Koentges, G. (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295, 1493-1500 https://doi.org/10.1126/science.1069259
  207. Brandt, N. R., Caswell, A. H., Wen, S. R., and Talvenheimo, J. A. (1990) Molecular interactions of the junctional foot protein and dihydropyridine receptor in skeletal muscle triads. J. Membr. Biol. 113, 237-251 https://doi.org/10.1007/BF01870075
  208. Flemming, R., Xu, S. Z., and Beech, D. J. (2003) Pharmacological profile of store-operated channels in cerebral arteriolar smooth muscle cells. Br. J. Pharmacol. 139, 955-965 https://doi.org/10.1038/sj.bjp.0705327
  209. Franzini-Armstrong, C. and Jorgensen, A. O. (1994) Structure and development of E-C coupling units in skeletal muscle. Annu. Rev. Physiol. 56, 509-534 https://doi.org/10.1146/annurev.ph.56.030194.002453
  210. Freichel, M., Vennekens, R., Olausson, J., Stolz, S., Philipp, S. E., et al. (2005) Functional role of TRPC proteins in native systems: implications from knockout and knock-down studies. J. Physiol. 567, 59-66 https://doi.org/10.1113/jphysiol.2005.092999
  211. Grunwald, R. and Meissner, G. (1995) Lumenal sites and C terminus accessibility of the skeletal muscle calcium release channel (ryanodine receptor). J. Biol. Chem. 270, 11338-11347 https://doi.org/10.1074/jbc.270.19.11338
  212. Yano, M., el-Hayek, R., and Ikemoto, N. (1995) Role of calcium feedback in excitation-contraction coupling in isolated triads. J. Biol. Chem. 270, 19936-19942 https://doi.org/10.1074/jbc.270.34.19936
  213. Lehnart, S. E., Huang, F., Marx, S. O., and Marks, A. R. (2003) Immunophilins and coupled gating of ryanodine receptors. Curr. Top. Med. Chem. 3, 1383-1391 https://doi.org/10.2174/1568026033451907
  214. Plant, T. D. and Schaefer, M. (2003) TRPC4 and TRPC5: receptor- operated $Ca^{2+}$-permeable nonselective cation channels. Cell Calcium 33, 441-450 https://doi.org/10.1016/S0143-4160(03)00055-1
  215. Albert, A. P. (2004) Activation of TRPC6 channel proteins: evidence for an essential role of phosphorylation. J. Physiol. 561, 354 https://doi.org/10.1113/jphysiol.2004.077131
  216. Shim, S., Goh, E. L., Ge, S., Sailor, K., Yuan, J. P., et al. (2005) XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nat. Neurosci. 8, 730-735 https://doi.org/10.1038/nn1459
  217. Takeshima, H., Komazaki, S., Nishi, M., Iino, M., and Kangawa, K. (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol. Cell 6, 11-22 https://doi.org/10.1016/S1097-2765(00)00003-4
  218. Allen, P. D. (2002) Leaky 'feet' and sudden death. Circ. Res. 91, 181-182 https://doi.org/10.1161/01.RES.0000030194.38795.86
  219. Brandt, A., Schleithoff, L., Jurkat-Rott, K., Klingler, W., Baur, C., et al. (1999) Screening of the ryanodine receptor gene in 105 malignant hyperthermia families: novel mutations and concordance with the in vitro contracture test. Hum. Mol. Genet. 8, 2055-2062 https://doi.org/10.1093/hmg/8.11.2055
  220. Freichel, M., Philipp, S., Cavalie, A., and Flockerzi, V. (2004) TRPC4 and TRPC4-deficient mice. Novartis Found. Symp. 258, 189-199
  221. Saimi, Y. and Kung, C. (2002) Calmodulin as an ion channel subunit. Annu. Rev. Physiol. 64, 289-311 https://doi.org/10.1146/annurev.physiol.64.100301.111649
  222. Antoniotti, S., Lovisolo, D., Fiorio Pla, A., and Munaron, L. (2002) Expression and functional role of bTRPC1 channels in native endothelial cells. FEBS Lett. 510, 189-195 https://doi.org/10.1016/S0014-5793(01)03256-2
  223. Barac, Y. D., Zeevi-Levin, N., Yaniv, G., Reiter, I., Milman, F., et al. (2005) The 1,4,5-inositol trisphosphate pathway is a key component in Fas-mediated hypertrophy in neonatal rat ventricular myocytes. Cardiovasc. Res. 68, 75-86 https://doi.org/10.1016/j.cardiores.2005.05.015
  224. Kunichika, N., Landsberg, J. W., Yu, Y., Kunichika, H., Thistlethwaite, P. A., et al. (2004) Bosentan inhibits transient receptor potential channel expression in pulmonary vascular myocytes. Am. J. Respir. Crit. Care. Med. 170, 1101-1107 https://doi.org/10.1164/rccm.200312-1668OC
  225. Kwan, H. Y., Huang, Y., and Yao, X. (2004) Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc. Natl. Acad. Sci. USA 101, 2625-2630
  226. Montell, C., Birnbaumer, L., and Flockerzi, V. (2002) The TRP channels, a remarkably functional family. Cell 108, 595-598 https://doi.org/10.1016/S0092-8674(02)00670-0
  227. Ottini, L., Marziali, G., Conti, A., Charlesworth, A., and Sorrentino, V. (1996) Alpha and beta isoforms of ryanodine receptor from chicken skeletal muscle are the homologues of mammalian RyR1 and RyR3. Biochem. J. 315, 207-216 https://doi.org/10.1042/bj3150315
  228. Payne, A. M., Zheng, Z., Gonzalez, E., Wang, Z. M., Messi, M. L., et al. (2004) External $Ca^{2+}$-dependent excitationcontraction coupling in a population of ageing mouse skeletal muscle fibres. J. Physiol. 560, 137-155 https://doi.org/10.1113/jphysiol.2004.067322
  229. Sham, J. S., Cleemann, L., and Morad, M. (1995) Functional coupling of $Ca^{2+}$ channels and ryanodine receptors in cardiac myocytes. Proc. Natl. Acad. Sci. USA 92, 121-125
  230. Fleischer, S., Ogunbunmi, E. M., Dixon, M. C., and Fleer, E. A. (1985) Localization of $Ca^{2+}$ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. Proc. Natl. Acad. Sci. USA 82, 7256- 7259